
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

On high-energy tails in inelastic gases

Lambiotte, R.; Brenig, L.; Salazar, J.M.

Published in:
Physica A: Statistical Mechanics and its Applications

DOI:
10.1016/j.physa.2005.10.037

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for pulished version (HARVARD):
Lambiotte, R, Brenig, L & Salazar, JM 2006, 'On high-energy tails in inelastic gases' Physica A: Statistical
Mechanics and its Applications, vol. 366, pp. 250-254. https://doi.org/10.1016/j.physa.2005.10.037

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198262371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.physa.2005.10.037
https://researchportal.unamur.be/en/publications/on-highenergy-tails-in-inelastic-gases(3da20fa4-ebef-47be-98b5-89213f1217cf).html


ARTICLE IN PRESS
0378-4371/$ - se

doi:10.1016/j.ph

�Correspond
Boulevard du T

E-mail addr
Physica A 366 (2006) 250–254

www.elsevier.com/locate/physa
On high-energy tails in inelastic gases

R. Lambiottea,b,�, L. Breniga, J.M. Salazarc

aPhysique Statistique, Plasmas et Optique Non-linéaire, Université Libre de Bruxelles,

Campus Plaine, Boulevard du Triomphe, Code Postal 231, 1050 Bruxelles, Belgium
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Abstract

We study the formation of high-energy tails in a one-dimensional kinetic model for granular gases, the so-called Inelastic

Maxwell Model. We introduce a time-discretized version of the stochastic process, and show that continuous time implies

larger fluctuations of the particles energies. This is due to a statistical relation between the number of inelastic collisions

undergone by a particle and its average energy. This feature is responsible for the high-energy tails in the model, as shown

by computer simulations and by analytical calculations on a linear Lorentz model.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Granular models of complex systems; Random walks and Lévy flights; Kinetic theory
1. Introduction

Lorentz gas models have been used historically in order to clarify the features of more complex non-linear
kinetic equations. For instance, Ehrenfest [1] introduced the so-called wind tree model, in order to
discuss the Stosszahlansatz of the Boltzmann equation. In this paper, we will use a similar approach in order
to study inelastic gases, namely low-density systems composed of a large number of moving macroscopic
particles, themselves performing inelastic interactions. Due to their inelasticity, inelastic gases dissipate
kinetic energy. This implies that the granular temperature, defined kinetically by T�hV2i, where V �

v� uðr; tÞ and uðr; tÞ is the local mean velocity, asymptotically vanishes if the system is not supplied by an
external energy source. Before reaching total rest state, these systems usually reach a self-similar solution,
i.e., form preserving solution whose time dependence occurs through the granular temperature,
f ðv; tÞ ¼ ð1

ffiffiffiffiffiffiffiffiffi
TðtÞ

p
Þf Sðv=

ffiffiffiffiffiffiffiffiffi
TðtÞ

p
Þ. Such scaling velocity distributions have been observed in a large variety of

kinetic models, and have been shown to generically highlight non-Maxwellian features and overpopulated
high-energy tail [2–4]. Let us note that the specific shape of the tail may exhibit very different behaviours,
depending on the details of the model [5].
e front matter r 2005 Elsevier B.V. All rights reserved.
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In this paper, we show on simplified kinetic models that such high-energy tails may originate from the fact
that the average energy of particles depends on their collision history, i.e., on the number of collisions they
have undergone in the course of time. This effect, that has no counterpart in the case of elastic interactions, is
verified by direct simulation Monte-Carlo (DSMC) simulations of the non-linear Inelastic Maxwell Models
(IMM), and by focusing on a discrete time version of the dynamics. Analytical calculations are also performed
for a simpler linear Lorentz model.

2. Inelastic Maxwell Model

In the following, we study scaling solutions in the context of the one-dimensional IMM. This model [2]
derives from a mathematical simplification of the non-linear Boltzmann equation for inelastic hard rods [6],
assuming that the collision rate may be replaced by an average rate, independent of the relative velocity of the
colliding particles. We also assume that the system is and remain homogeneous in the course of time, so that
the resulting kinetic equation writes

qf ðv1; tÞ

qt
þ f ðv1; tÞ ¼

Z 1
�1

dv2
1

a

� �
f ðv01; tÞf ðv

0
2; tÞ, (1)

where the primed velocities are the pre-collisional velocities, defined by the collision rule:

v01 ¼ v1 �
ð1þ aÞ
2a

v12; v02 ¼ v2 þ
ð1þ aÞ
2a

v12. (2)

v12 is the relative velocity v1 � v2. The restitution parameter a 2�0 : 1� measures dissipation of energy at each
collision, and the elastic limit corresponds to the case a ¼ 1. It is well-known that the scaling solution of (1)
reads [7]:

f ðv; tÞ ¼
1

p
ffiffiffiffiffiffiffiffiffi
TðtÞ

p 1

½1þ ðv=
ffiffiffiffiffiffiffiffiffi
TðtÞ

p
Þ
2
�2
, (3)

where the granular temperature decreases like TðtÞ ¼ T0e
�ð1�aÞ2t=2.

Recently, we have introduced [8] a time discretized version of (1):

f Nþ1ðv1Þ ¼

Z 1
�1

dv2
1

a

� �
f N ðv

0
1Þf N ðv

0
2Þ. (4)

Let us call continuous time dynamics (CTD) and discrete time dynamics (DTD) the models associated to (1)
and (4), respectively. Arguments based on the central limit theorem show that any initial velocity distribution
converges towards a scaling solution whose shape is Gaussian in the case of DTD:

f N ðvÞ ¼
1

ð2pTN Þ
1=2

e�v2=2TN . (5)

TN is the temperature after N collision steps, TN ¼ ðð1þ a2Þ=2ÞNT0. One should stress that the transition
from a power law tail (3) towards a Maxwell–Boltzmann distribution (5) is entirely due to the passage from a
continuous time towards a discrete time description. The main difference between these two models follows. In
DTD, every particle has suffered exactly N inelastic collisions at time N, so that it has dissipated the same
fraction of energy on the average at that time. In contrast, in CDT, the constituents of the inelastic gas have
performed different number of inelastic collisions N at a given time t, distributed according to the Poisson law
tNe�t=N!. This suggests that ensembles of particles, discriminated by their number of collisions, should be
characterised by different quantities of energy on average, thereby increasing fluctuations of the particles
energies.

In order to verify this possible explanation, we have performed DSMC simulations [9] of the kinetic
equations (1) and (4), based on their interpretation as a stochastic process. The CDT case is well-known and
consists in picking a given number of random collision pairs at each step. The DTD case is based on the same
algorithm, except that at each step, the N particles are distributed randomly into N=2 collision couples. This
method ensures that each particle collides one and only one time at each step. At the end of each step, the
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Fig. 1. In (a), velocity distributions in arithmetic and in logarithmic scale (inset) for DTD. The solid line corresponds to the theoretical

Maxwell–Boltzmann distribution. In (b), the simulations of CDT show the convergence towards the theoretical solution (3) (solid line). In

both cases, the system is composed of 150 000 particles with a ¼ 0:5. The asymptotic velocity distribution is plotted with circles ð�Þ. The

dashed lines are guides for the eye in order to isolate the initial conditions, that are uniform or Maxwell–Boltzmann distribution.
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Fig. 2. Average energy of particles as a function of their number of collisions. The dashed line is the constant valueoE4 ¼ 1. The system

is composed of 20 000 000 particles with a ¼ 0:5.
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velocities are rescaled in order to keep the total energy constant [10]. Simulation methods have been verified by
looking at the asymptotic velocity distribution, and checking the theoretical results (3) and (5) (Fig.1). In the
case of CDT, we have also highlighted a non-trivial relation between the number of collisions suffered by a
particle and its average energy. In order to evaluate this relation, we have started a simulation from a
Maxwell–Boltzmann initial condition, and let the simulation run during 50 collisions per particle. After that
time, the simulation is stopped, the particles velocities are rescaled so that the average energy hEi ¼ 1 and we
measure the average energy hEiK of particles having performed K collisions. The results (Fig. 2) clearly show
that the average energy of particles is a decreasing function of their number of collisions, thereby confirming
the above discussion.

3. One-dimensional Lorentz model

Lorentz-like models have already been applied to the study of inelastic gases, in order to show non-
equipartition of energy for instance [19]. These systems are composed of particles that do not interact between
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themselves, and undergo collisions with randomly distributed static (infinitely heavy) scatterers. In this paper,
we will consider a model which is very similar to the Ehrenfest wind tree model [1]:

qf ðv; tÞ

qt
¼ jvj

1

a2
f ðv0; tÞ � f ðv; tÞ

� �
, (6)

where the pre-collisional is defined by v0 ¼ �ð1=aÞv. This kinetic equation has been shown [12,13] to be related
to the inelastic Liouville equation [14] and to population dynamics [12]. In the following, we use an IMM-like
approximation in order to treat this kinetic equation, i.e., we assume that the collision rate jvj may be replaced
by a mean value

ffiffiffiffiffiffiffiffiffi
TðtÞ

p
and we rescale the time scale. We call the resulting model the Inelastic Lorentz Walk

(ILW):

qf ðv; tÞ

qt
¼

1

a
f

v

a
; t

� �
� f ðv; tÞ 3

qfðk; tÞ
qt

¼ fðak; tÞ � fðk; tÞ. (7)

Let us note that this model has been studied independently by Ben-Naim and Krapivsky [15]. The right side
equation is the kinetic equation for the characteristic function of the velocity distribution
fðk; tÞ ¼ ð1=2pÞ

R
dvf ðv; tÞeikv. In Fourier space, the discrete time version of the process reads:

fNþ1ðkÞ ¼ fNðakÞ (8)

whose solution is

fN ðkÞ ¼ f0ða
NkÞ. (9)

This relation implies that the stochastic process leaves the solution scale invariant, i.e., (9) is a self-similar
solution whose form is that of the initial velocity distribution and whose temperature asymptotically vanishes.
Obviously, the discrete process does not lead to the formation of high-energy tails, but this property ceases to
be true if only a fraction p of the discs performs a collision at each step. In this case, the state of the system
after one step writes:

f1ðkÞ ¼ ð1� pÞf0ðkÞ þ pf0ðakÞ. (10)

Simple analytical calculations show that the kurtosis k � hv4i=hv2i2 of the velocity distribution increases
through (10) whatever the initial velocity distribution and proportion pa1. This is due to the fact that the
superposition of identical distributions with different temperatures T1, T2 has a higher energy tail than the
same distribution with the mean temperature T � ð1� pÞT1 þ pT2 [16,17]. Contrary to the non-linear IMM,
the link between the discrete and the continuous time dynamics is straightforward. Indeed, usual methods of
random walk theory [18] lead to

fðk; tÞ ¼
X1
N¼0

tNe�t

N!
f0ða

NkÞ. (11)

The system at time t is thus composed of different classes of particles that are characterised by their mean
energy aN , or equivalently by the number N of undergone collisions. The proportion of particles in these
classes is given by the probability for a particle of having performed N collisions before time t, namely
tNe�t=N!. One should note that (11) is a superposition of the initial distribution at different energies, as in (10)
and leads to the formation of high-energy tails by the same mechanism. Assuming that the small k

development of the initial characteristic function is f0ðk; tÞ ¼
P1

i¼0 c0ik
i=i!, the formal solution (11) reads:

fðk; tÞ ¼
X1
i¼0

c0ik
i

i!
e�ð1�a

iÞt. (12)

Detailed analysis of this solution shows that ILW exhibits multiscaling properties, i.e., the dimensionalized
velocity moments mi � ðhðv

2Þ
i
iÞ
1=2i decay with different cooling rates mi�e

�li t. The cooling rates are given by
li ¼ ð1� aiÞ=i and are decreasing function of i: liolj , i4j. Consequently, the system is characterised by an
infinite number of independent cooling rates. Moreover, the velocity moments mi, iX2, grow towards infinity
as compared to m1.
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4. Conclusions

In this paper, we study the formation of the high-energy tails observed in inelastic gases. To do so, we focus
on the one-dimensional IMM, which is a mean field approximation of the Boltzmann equation for inelastic
hard rods. By comparing a discrete and a continuous time version of the process, we show how fluctuations of
the number of collisions imply the emergence of high-energy tails. To do so, we perform DSMC simulations of
both dynamics, thereby highlighting a new relation between number of inelastic collisions undergone by a
particle and its average energy. This relation is also analytically studied by focusing on a simpler linear model,
i.e. the ILW. Let us stress that this mechanism is specific to inelastic gases, where energy is dissipated at each
collision, and has no counterpart in elastic gases. A generalisation of this work to higher dimensional systems
and to more general kinetic models is under progress.
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