4 research outputs found

    Coupling crystal plasticity and continuum damage mechanics for creep assessment in Cr-based power-plant steel

    Get PDF
    To improve the design and safety of power plant components, long-term hightemperature creep behaviour of a power-plant material, such as Cr-based alloy, should be assessed. Prior studies indicate that power-plant components undergo material degradation and premature failure by nucleation, growth and coalescence of microvoids as a result of creep damage. In classical crystal-plasticity-based models, a flow rule and a hardening law do not account for global stiffness degradation of materials due to evolving microvoids, having a significant influence on material behaviour, especially under large deformations. In this study, a crystal-plasticity scheme coupled with an appropriate continuum damage model is developed to capture the anisotropic creep-damage effect on the overall deformation behaviour of Cr-based power-plant steel. Numerical simulations show that the developed approach can characterize creep deformation of the material exposed to a range of stress levels and temperatures under consideration of stiffness degradation under large deformation

    The Fabrication and Evaluation of a Potential Biomaterial Produced with Stem Cell Sheet Technology for Future Regenerative Medicine

    No full text
    To date, the decellularized scaffold has been widely explored as a source of biological scaffolds for regenerative medicine. However, the acellular matrix derived from natural tissues and organs has a lot of defects, including the limited amount of autogenous tissue and surgical complication such as risk of blood loss, wound infection, pain, shock, and functional damage in the donor part of the body. In this study, we prepared acellular matrix using adipose-derived stem cell (ADSC) sheets and evaluate the cellular compatibility and immunoreactivity. The ADSC sheets were fabricated and subsequently decellularized using repeated freeze-thaw, Triton X-100 and SDS decellularization. Oral mucosal epithelial cells were seeded onto the decellularized ADSC sheets to evaluate the cell replantation ability, and silk fibroin was used as the control. Then, acellular matrix was transplanted onto subcutaneous tissue for 1 week or 3 weeks; H&E staining and immunohistochemical analysis of CD68 expression and quantitative real-time PCR (qPCR) were performed to evaluate the immunogenicity and biocompatibility. The ADSC sheet-derived ECM scaffolds preserved the three-dimensional architecture of ECM and retained the cytokines by Triton X-100 decellularization protocols. Compared with silk fibroin in vitro, the oral mucosal epithelial cells survived better on the decellularized ADSC sheets with an intact and consecutive epidermal cellular layer. Compared with porcine small intestinal submucosa (SIS) in vivo, the homogeneous decellularized ADSC sheets had less monocyte-macrophage infiltrating in vivo implantation. During 3 weeks after transplantation, the mRNA expression of cytokines, such as IL-4/IL-10, was obviously higher in decellularized ADSC sheets than that of porcine SIS. A Triton X-100 method can achieve effective cell removal, retain major ECM components, and preserve the ultrastructure of ADSC sheets. The decellularized ADSC sheets possess good recellularization capacity and excellent biocompatibility. This study demonstrated the potential suitability of utilizing acellular matrix from ADSC sheets for soft tissue regeneration and repair
    corecore