1,015 research outputs found

    Risk factors and pathways to imprisonment among incarcerated women in Victoria, 1860–1920

    Full text link
    © 2018 International Australian Studies Association. Criminological studies have found that men’s and women’s pathways to imprisonment differ, with risk factors such as substance abuse, mental illness, socioeconomic circumstances and past victimisation more strongly associated with female prisoners. However, limited quantitative or longitudinal research exists on how the risk factors associated with female offending may have shifted over time. This article investigates the criminal careers and pathways to imprisonment of 6,042 women incarcerated in Victoria between 1860 and 1920, and the risk factors associated with subsequent recidivism. The findings suggest that, while many of today’s risk factors were present historically, there have been notable shifts across time

    The terrestrial evolution of metabolism and life – by the numbers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allometric scaling relating body mass to metabolic rate by an exponent of the former (<it>Kleiber's Law</it>), commonly known as quarter-power scaling (QPS), is controversial for claims made on its behalf, especially that of its universality for all life. As originally formulated, Kleiber was based upon the study of heat; metabolic rate is quantified in watts (or calories per unit time). Techniques and technology for metabolic energy measurement have been refined but the math has not. QPS is susceptible to increasing deviations from theoretical predictions to data, suggesting that there is no single, universal exponent relevant to all of life. QPS's major proponents continue to fail to make good on hints of the power of the equation for understanding aging.</p> <p>Essentialist-deductivist view</p> <p>If the equation includes a term for efficiency in the exponent, thereby ruling out thermogenesis as part of metabolism, its heuristic power is greatly amplified, and testable deductive inferences are generated. If metabolic rate is measured in watts and metabolic efficiency is a redox-coupling ratio, then the equation is essentially about the energy storage capacity of organic molecules. The equation is entirely about the essentials of all life: water, salt, organic molecules, and energy. The water and salt provide an electrochemical salt bridge for the transmission of energy into and through the organic components. The equation, when graphed, treats the organic structure as battery-like, and relates its recharge rate and electrical properties to its longevity.</p> <p>Conclusion</p> <p>The equation models the longevity-extending effects of caloric restriction, and shows where those effects wane. It models the immortality of some types of cells, and supports the argument for the origin of life being at submarine volcanic vents and black smokers. It clarifies how early life had to change to survive drifting to the surface, and what drove mutations in its ascent. It does not deal with cause and effect; it deals with variables in the essentials of all life, and treats life as an epiphenomenon of those variables. The equation describes how battery discharge into the body can increase muscle mass, promote fitness, and extend life span, among other issues.</p

    Next-to-leading order predictions for Z gamma+jet and Z gamma gamma final states at the LHC

    Full text link
    We present next-to-leading order predictions for final states containing leptons produced through the decay of a Z boson in association with either a photon and a jet, or a pair of photons. The effect of photon radiation from the final state leptons is included and we also allow for contributions arising from fragmentation processes. Phenomenological studies are presented for the LHC in the case of final states containing charged leptons and in the case of neutrinos. We also use the procedure introduced by Stewart and Tackmann to provide a reliable estimate of the scale uncertainty inherent in our theoretical calculations of jet-binned Z gamma cross sections. These computations have been implemented in the public code MCFM.Comment: 30 pages, 10 figure

    PDF dependence of Higgs cross sections at the Tevatron and LHC: response to recent criticism

    Get PDF
    We respond to some criticism questioning the validity of the current Standard Model Higgs exclusion limits at the Tevatron, due to the significant dependence of the dominant production cross section from gluon-gluon fusion on the choice of parton distribution functions (PDFs) and the strong coupling (alpha_S). We demonstrate the ability of the Tevatron jet data to discriminate between different high-x gluon distributions, performing a detailed quantitative comparison to show that fits not explicitly including these data fail to give a good description. In this context we emphasise the importance of the consistent treatment of luminosity uncertainties. We comment on the values of alpha_S obtained from fitting deep-inelastic scattering data, particularly the fixed-target NMC data, and we show that jet data are needed for stability. We conclude that the Higgs cross-section uncertainties due to PDFs and alpha_S currently used by the Tevatron and LHC experiments are not significantly underestimated, contrary to some recent claims.Comment: 44 pages, 19 figures. v2: version published in JHEP (paragraph added at bottom of p.15

    Industrial energy use and the human life history

    Get PDF
    The demographic rates of most organisms are supported by the consumption of food energy, which is used to produce new biomass and fuel physiological processes. Unlike other species, modern humans use ‘extra-metabolic' energy sources acquired independent of physiology, which also influence demographics. We ask whether the amount of extra-metabolic energy added to the energy budget affects demographic and life history traits in a predictable way. Currently it is not known how human demographics respond to energy use, and we characterize this response using an allometric approach. All of the human life history traits we examine are significant functions of per capita energy use across industrialized populations. We find a continuum of traits from those that respond strongly to the amount of extra-metabolic energy used, to those that respond with shallow slopes. We also show that the differences in plasticity across traits can drive the net reproductive rate to below-replacement levels

    GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes

    Get PDF
    We present 'gene prediction improvement pipeline' (GenePRIMP; http://geneprimp.jgi-psf.org/), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies

    Hierarchy measure for complex networks

    Get PDF
    Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure.Comment: 29 pages, 9 figures, 4 table

    Sizing Up Allometric Scaling Theory

    Get PDF
    Metabolic rate, heart rate, lifespan, and many other physiological properties vary with body mass in systematic and interrelated ways. Present empirical data suggest that these scaling relationships take the form of power laws with exponents that are simple multiples of one quarter. A compelling explanation of this observation was put forward a decade ago by West, Brown, and Enquist (WBE). Their framework elucidates the link between metabolic rate and body mass by focusing on the dynamics and structure of resource distribution networks—the cardiovascular system in the case of mammals. Within this framework the WBE model is based on eight assumptions from which it derives the well-known observed scaling exponent of 3/4. In this paper we clarify that this result only holds in the limit of infinite network size (body mass) and that the actual exponent predicted by the model depends on the sizes of the organisms being studied. Failure to clarify and to explore the nature of this approximation has led to debates about the WBE model that were at cross purposes. We compute analytical expressions for the finite-size corrections to the 3/4 exponent, resulting in a spectrum of scaling exponents as a function of absolute network size. When accounting for these corrections over a size range spanning the eight orders of magnitude observed in mammals, the WBE model predicts a scaling exponent of 0.81, seemingly at odds with data. We then proceed to study the sensitivity of the scaling exponent with respect to variations in several assumptions that underlie the WBE model, always in the context of finite-size corrections. Here too, the trends we derive from the model seem at odds with trends detectable in empirical data. Our work illustrates the utility of the WBE framework in reasoning about allometric scaling, while at the same time suggesting that the current canonical model may need amendments to bring its predictions fully in line with available datasets

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus
    corecore