25 research outputs found

    A de novo paradigm for male infertility

    Get PDF
    Genetics of Male Infertility Initiative (GEMINI) consortium: Donald F. Conrad, Liina Nagirnaja, Kenneth I. Aston, Douglas T. Carrell, James M. Hotaling, Timothy G. Jenkins, Rob McLachlan, Moira K. O’Bryan, Peter N. Schlegel, Michael L. Eisenberg, Jay I. Sandlow, Emily S. Jungheim, Kenan R. Omurtag, Alexandra M. Lopes, Susana Seixas, Filipa Carvalho, Susana Fernandes, Alberto Barros, João Gonçalves, Iris Caetano, Graça Pinto, Sónia Correia, Maris Laan, Margus Punab, Ewa Rajpert-De Meyts, Niels Jørgensen, Kristian Almstrup, Csilla G. Krausz & Keith A. Jarvi.De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10−5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10−4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.This project was funded by The Netherlands Organization for Scientific Research (918-15-667) to J.A.V. as well as an Investigator Award in Science from the Wellcome Trust (209451) to J.A.V. a grant from the Catherine van Tussenbroek Foundation to M.S.O. a grant from MERCK to R.S. a UUKi Rutherford Fund Fellowship awarded to B.J.H. and the German Research Foundation Clinical Research Unit “Male Germ Cells” (DFG, CRU326) to C.F. and F.T. This project was also supported in part by funding from the Australian National Health and Medical Research Council (APP1120356) to M.K.O.B., by grants from the National Institutes of Health of the United States of America (R01HD078641 to D.F.C. and K.I.A., P50HD096723 to D.F.C.) and from the Biotechnology and Biological Sciences Research Council (BB/S008039/1) to D.J.E.info:eu-repo/semantics/publishedVersio

    The relationship between fertility and lifespan in humans

    Get PDF
    Evolutionary theories of aging predict a trade-off between fertility and lifespan, where increased lifespan comes at the cost of reduced fertility. Support for this prediction has been obtained from various sources. However, which genes underlie this relationship is unknown. To assess it, we first analyzed the association of fertility with age at menarche and menopause, and with mortality in 3,575 married female participants of the Rotterdam Study. In addition, we conducted a candidate gene study where 1,664 single nucleotide polymorphisms (SNPs) in 25 candidate genes were analyzed in relation to number of children as a measure of fertility. SNPs that associated with fertility were analyzed for association with mortality. We observed no associations between fertility and age at menarche (p = 0.38) and menopause (p = 0.07). In contrast, fertility was associated with mortality. Women with two to three children had significantly lower mortality (hazard ratio (HR), 0.82; 95% confidence interval (95% CI), 0.69–0.97) compared to women with no children. No such benefit was observed for women with four or more children, who had a similar mortality risk (HR, 0.93; 95% CI, 0.76–1.13) as women with no children. The analysis of candidate genes revealed four genes that influence fertility after correction for multiple testing: CGB/LHB gene cluster (p = 0.0036), FSHR (p = 0.023), FST (p = 0.023), and INHBA (p = 0.021). However, none of the independent SNPs in these genes predicted mortality. In conclusion, women who bear two to three children live longer than those who bear none or many children, but this relationship was not mediated by the candidate genes analyzed in this study

    A de novo paradigm for male infertility

    Get PDF
    Funding Information: (DFG, CRU326) to C.F. and F.T. This project was also supported in part by funding from the Australian National Health and Medical Research Council (APP1120356) to M.K.O.B., by grants from the National Institutes of Health of the United States of America (R01HD078641 to D.F.C. and K.I.A., P50HD096723 to D.F.C.) and from the Biotechnology and Biological Sciences Research Council (BB/S008039/1) to D.J.E. Funding Information: We are grateful for the participation of all patients and their parents in this study. We thank Laurens van de Wiel (Radboudumc), Sebastian Judd-Mole (Monash University), Arron Scott and Bryan Hepworth (Newcastle University) for technical support, and Margot J Wyrwoll (University of Münster) for help with handling MERGE samples and data. This project was funded by The Netherlands Organization for Scientific Research (918-15-667) to J.A.V. as well as an Investigator Award in Science from the Wellcome Trust (209451) to J.A.V. a grant from the Catherine van Tussenbroek Foundation to M.S.O. a grant from MERCK to R.S. a UUKi Rutherford Fund Fellowship awarded to B.J.H. and the German Research Foundation Clinical Research Unit “Male Germ Cells” Publisher Copyright: © 2022, The Author(s).De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10−5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10−4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.publishersversionpublishe

    A de novo paradigm for male infertility

    Get PDF
    De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p -value = 1.00 × 10 −5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p -value = 5.01 × 10 −4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p -value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility. Germline de novo mutations can impact individual fitness, but their role in human male infertility is understudied. Trio-based exome sequencing identifies many new candidate genes affecting male fertility, including an essential regulator of male germ cell pre-mRNA splicing

    Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia

    No full text
    Infertility affects around 7% of men worldwide. Idiopathic non-obstructive azoospermia (NOA) is defined as the absence of spermatozoa in the ejaculate due to failed spermatogenesis. There is a high probability that NOA is caused by rare genetic defects. In this study, whole-exome sequencing (WES) was applied to two Estonian brothers diagnosed with NOA and Sertoli cell-only syndrome (SCOS). Compound heterozygous loss-of-function (LoF) variants in FANCM (Fanconi anemia complementation group M) were detected as the most likely cause for their condition. A rare maternally inherited frameshift variant p.Gln498Thrfs∗7 (rs761250416) and a previously undescribed splicing variant (c.4387-10A>G) derived from the father introduce a premature STOP codon leading to a truncated protein. FANCM exhibits enhanced testicular expression. In control subjects, immunohistochemical staining localized FANCM to the Sertoli and spermatogenic cells of seminiferous tubules with increasing intensity through germ cell development. This is consistent with its role in maintaining genomic stability in meiosis and mitosis. In the individual with SCOS carrying bi-allelic FANCM LoF variants, none or only faint expression was detected in the Sertoli cells. As further evidence, we detected two additional NOA-affected case subjects with independent FANCM homozygous nonsense variants, one from Estonia (p.Gln1701∗; rs147021911) and another from Portugal (p.Arg1931∗; rs144567652). The study convincingly demonstrates that bi-allelic recessive LoF variants in FANCM cause azoospermia. FANCM pathogenic variants have also been linked with doubled risk of familial breast and ovarian cancer, providing an example mechanism for the association between infertility and cancer risk, supported by published data on Fancm mutant mouse models.Laura Kasak, Margus Punab, Liina Nagirnaja, Marina Grigorova, Ave Minajeva, Alexandra M. Lopes ... et al

    Actionable secondary findings following exome sequencing of 836 non-obstructive azoospermia cases and their value in patient management

    No full text
    GEMINI Consortium: Donald F Conrad, Liina Nagirnaja, Kenneth I Aston, Douglas T Carrell, James M Hotaling, Timothy G Jenkins, Rob McLachlan, Moira K O'Bryan, Peter N Schlegel, Michael L Eisenberg, Jay I Sandlow, Emily S Jungheim, Kenan R Omurtag, Alexandra M Lopes, Susana Seixas, Filipa Carvalho, Susana Fernandes, Alberto Barros, João Gonçalves, Maris Laan, Margus Punab, Ewa Rajpert-De Meyts, Niels Jørgensen, Kristian Almstrup, Csilla G Krausz, Keith A Jarvi.Study question: What is the load, distribution and added clinical value of secondary findings (SFs) identified in exome sequencing (ES) of patients with non-obstructive azoospermia (NOA)? Summary answer: One in 28 NOA cases carried an identifiable, medically actionable SF. What is known already: In addition to molecular diagnostics, ES allows assessment of clinically actionable disease-related gene variants that are not connected to the patient's primary diagnosis, but the knowledge of which may allow the prevention, delay or amelioration of late-onset monogenic conditions. Data on SFs in specific clinical patient groups, including reproductive failure, are currently limited. Study design, size, duration: The study group was a retrospective cohort of patients with NOA recruited in 10 clinics across six countries and formed in the framework of the international GEMINI (The GEnetics of Male INfertility Initiative) study. Participants/materials, setting, methods: ES data of 836 patients with NOA were exploited to analyze SFs in 85 genes recommended by the American College of Medical Genetics and Genomics (ACMG), Geisinger's MyCode, and Clinical Genome Resource. The identified 6374 exonic variants were annotated with ANNOVAR and filtered for allele frequency, retaining 1381 rare or novel missense and loss-of-function variants. After automatic assessment of pathogenicity with ClinVar and InterVar, 87 variants were manually curated. The final list of confident disease-causing SFs was communicated to the corresponding GEMINI centers. When patient consent had been given, available family health history and non-andrological medical data were retrospectively assessed. Main results and the role of chance: We found a 3.6% total frequency of SFs, 3.3% from the 59 ACMG SF v2.0 genes. One in 70 patients carried SFs in genes linked to familial cancer syndromes, whereas 1 in 60 cases was predisposed to congenital heart disease or other cardiovascular conditions. Retrospective assessment confirmed clinico-molecular diagnoses in several cases. Notably, 37% (11/30) of patients with SFs carried variants in genes linked to male infertility in mice, suggesting that some SFs may have a co-contributing role in spermatogenic impairment. Further studies are needed to determine whether these observations represent chance findings or the profile of SFs in NOA patients is indeed different from the general population. Limitations, reasons for caution: One limitation of our cohort was the low proportion of non-Caucasian ethnicities (9%). Additionally, as comprehensive clinical data were not available retrospectively for all men with SFs, we were not able to confirm a clinico-molecular diagnosis and assess the penetrance of the specific variants. Wider implications of the findings: For the first time, this study analyzed medically actionable SFs in men with spermatogenic failure. With the evolving process to incorporate ES into routine andrology practice for molecular diagnostic purposes, additional assessment of SFs can inform about future significant health concerns for infertility patients. Timely detection of SFs and respective genetic counseling will broaden options for disease prevention and early treatment, as well as inform choices and opportunities regarding family planning. A notable fraction of SFs was detected in genes implicated in maintaining genome integrity, essential in both mitosis and meiosis. Thus, potential genetic pleiotropy may exist between certain adult-onset monogenic diseases and NOA.This work was supported by the Estonian Research Council grants IUT34-12 and PRG1021 (M.L. and M.P.); National Institutes of Health of the United States of America grant R01HD078641 (D.F.C., K.I.A. and P.N.S.); National Institutes of Health of the United States of America grant P50HD096723 (D.F.C. and P.N.S.); National Health and Medical Research Council of Australia grant APP1120356 (M.K.O'B., D.F.C. and K.I.A.); Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Inovação grant POCI-01-0145-FEDER-007274 (A.M.L., F.C. and J.G.) and FCT: IF/01262/2014 (A.M.L.). J.G. was partially funded by FCT/Ministério da Ciência, Tecnologia e Ensino Superior (MCTES), through the Centre for Toxicogenomics and Human Health-ToxOmics (grants UID/BIM/00009/2016 and UIDB/00009/2020). M.L.E. is a consultant for, and holds stock in, Roman, Sandstone, Dadi, Hannah, Underdog and has received funding from NIH/NICHD.info:eu-repo/semantics/publishedVersio

    IFPA Meeting 2011 workshop report I: Placenta: Predicting future health; roles of lipids in the growth and development of feto-placental unit; placental nutrient sensing; placental research to solve clinical problems--a translational approach.

    No full text
    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2011 there were twelve themed workshops, four of which are summarized in this report. These workshops related to both basic science and clinical research into placental growth and nutrient sensing and were divided into 1) placenta: predicting future health; 2) roles of lipids in the growth and development of feto-placental unit; 3) placental nutrient sensing; 4) placental research to solve clinical problems: a translational approach
    corecore