356 research outputs found

    Using microsimulation feedback for trip adaptation for realistic traffic in Dallas

    Full text link
    This paper presents a day-to-day re-routing relaxation approach for traffic simulations. Starting from an initial planset for the routes, the route-based microsimulation is executed. The result of the microsimulation is fed into a re-router, which re-routes a certain percentage of all trips. This approach makes the traffic patterns in the microsimulation much more reasonable. Further, it is shown that the method described in this paper can lead to strong oscillations in the solutions.Comment: Accepted by International Journal of Modern Physics C. Complete postscript version including figures in http://www-transims.tsasa.lanl.gov/research_team/papers

    Unique Properties of Thermally Tailored Copper: Magnetically Active Regions and Anomalous X-ray Fluorescence Emissions

    Get PDF
    When high-purity copper (≥99.98%wt) is melted, held in its liquid state for a few hours with iterative thermal cycling, then allowed to resolidify, the ingot surface is found to have many small regions that are magnetically active. X-ray fluorescence analysis of these regions exhibit remarkably intense lines from “sensitized elements” (SE), including in part or fully the contiguous series V, Cr, Mn, Fe, and Co. The XRF emissions from SE are far more intense than expected from known impurity levels. Comparison with blanks and standards show that the thermal “tailoring” also introduces strongly enhanced SE emissions in samples taken from the interior of the copper ingots. For some magnetic regions, the location as well as the SE emissions, although persistent, vary irregularly with time. Also, for some regions extraordinarily intense “sensitized iron” (SFe) emissions occur, accompanied by drastic attenuation of Cu emissions

    Orion Portable Fire Extinguisher Performance Testing Against a Laptop Lithium-Ion Battery Stored-Energy Fire-Method, Magnesium Fires, and Combustion By-Product Toxicity

    Get PDF
    As part of the qualification of the International Space Station (ISS) fine water mist portable fire extinguisher (PFE), several test methods were developed to determine firefighting capability against stored-energy sources. The most challenging of these devised stored-energy fire test methods proved to be the Lithium-ion (Li-ion) battery fire test scenario. The Orion crew capsule will utilize a different PFE technology from ISS (water spray rather than water mist), which spurred the need for the same type of evaluation focused on the sources of stored energy slated for use on Orion. Laptops were identified as a realistic source for stored-energy fires, requiring a modified Li-ion battery fire test scenario. In addition to open test cell (ambient oxygen concentration) testing to evaluate new proposed PFE performance, sealed chamber (20.9% and elevated oxygen concentration) testing was also performed. Chamber testing included combustion product sampling at various fire progression points for analysis and application to Orion emergency equipment design and response planning. The PFE stored-energy fire test methodology was modified and testing performed. Initial tests indicated ignition of the laptop magnesium laptop cases was possible. Additional tests were performed to characterize the laptop magnesium case fire behavior in various configurations. The new water spray PFE technology proved effective in extinguishing laptop stored-energy fires, and much was learned in the way these types of fires progressed. Findings indicate potential laptop magnesium case ignition mitigation strategies need to be further investigated

    Characterization of Laptop Fires in Spacecraft

    Get PDF
    An accidental fire involving the Lithium-Ion (Li-ion) battery in a laptop computer is one of the most likely fire scenarios on-board a spacecraft. These fires can occur from a defect in the battery that worsens with time, over-charging the battery and leading to failure or accidental damage caused by thermal runaway. While this is a relatively likely fire scenario, very little is known about the how a laptop computer fire would impact a sealed spacecraft. The heat release would likely cause a pressure rise, possibly exceeding the pressure limit of the vehicle and causing a relief valve to open. The combustion products from the fire could pose a short-term and long-term health hazard to the crew and the fire itself could cause injury to the crew and damage to the spacecraft. Despite the hazard posed by a laptop fire, there is little quantitative data on the fire size, heat release and toxic product formation. This paper presents the results of initial attempts to quantify the fire resulting from a failed laptop fire tested at the NASA White Sands Test Facility (WSTF). The data from the testing is useful to attempt to determine the fire size and characteristics such as maximum heat release rate, total heat release, maximum temperatures and fire duration are determined. Using existing models and correlations for fires, the measured fire characteristics are extrapolated to laptop fires on a vehicle the approximate size of the Orion spacecraft

    Facilitator, Functionary, Friend or Foe? Studying the Role of iPads within Learning Activities Across a School Year

    Get PDF
    We present the findings from a longitudinal study of iPad use in a Primary school classroom. While tablet devices have found their way into classroom environments, we still lack in depth and long-term studies of how they integrate into everyday classroom activities. Our findings illustrate in-classroom tablet use and the broad range of learning activities in subjects such as maths, languages, social sciences, and even physical education. Our observations expand current models on teaching and learning supported by tablet technology. Our findings are child-centred, focusing on three different roles that tablets can play as part of learning activities: Friend, Functionary, and Facilitator. This new perspective on in-classroom tablet use can facilitate critical discussions around the integration and impact of these devices in the educational context, from a design and educational point of view

    Preconceptional, Gestational, and Lactational Exposure to an Unconventional Oil and Gas Chemical Mixture Alters Energy Expenditure in Adult Female Mice

    Get PDF
    Previous studies conducted in our laboratory have found altered adult health outcomes in animals with prenatal exposure to environmentally relevant levels of unconventional oil and gas (UOG) chemicals with endocrine-disrupting activity. This study aimed to examine potential metabolic health outcomes following a preconception, prenatal and postnatal exposure to a mixture of 23 UOG chemicals. Prior to mating and from gestation day 1 to postnatal day 21, C57BL/6J mice were developmentally exposed to a laboratory-created mixture of 23 UOG chemicals in maternal drinking water. Body composition, spontaneous activity, energy expenditure, and glucose tolerance were evaluated in 7-month-old female offspring. Neither body weight nor body composition differed in 7-month female mice. However, females exposed to 1.5 and 150 μg/kg/day UOG mix had lower total and resting energy expenditure within the dark cycle. In the light cycle, the 1,500 μg//kg/day group had lower total energy expenditure and the 1.5 μg/kg/day group had lower resting energy expenditure. Females exposed to the 150 μg/kg/day group had lower spontaneous activity in the dark cycle, and females exposed to the 1,500 μg/kg/day group had lower activity in the light cycle. This study reports for the first time that developmental exposure to a mixture of 23 UOG chemicals alters energy expenditure and spontaneous activity in adult female mice

    Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge

    Get PDF
    Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts. © 2016 The Author(s)
    corecore