2,243 research outputs found

    Seismic Halos Around Active Regions: An MHD Theory

    Full text link
    Comprehending the manner in which magnetic fields affect propagating waves is a first step toward constructing accurate helioseismic models of active region sub-surface structure and dynamics. Here, we present a numerical method to compute the linear interaction of waves with magnetic fields embedded in a solar-like stratified background. The ideal Magneto-Hydrodynamic (MHD) equations are solved in a 3-dimensional box that straddles the solar photosphere, extending from 35 Mm within to 1.2 Mm into the atmosphere. One of the challenges in performing these simulations involves generating a Magneto-Hydro-Static (MHS) state wherein the stratification assumes horizontal inhomogeneity in addition to the strong vertical stratification associated with the near-surface layers. Keeping in mind that the aim of this effort is to understand and characterize linear MHD interactions, we discuss a means of computing statically consistent background states. Power maps computed from simulations of waves interacting with thick flux tubes of peak photospheric field strengths 600 G and 3000 G are presented. Strong modal power reduction in the `umbral' regions of the flux tube enveloped by a halo of increased wave power are seen in the simulations with the thick flux tubes. These enhancements are also seen in Doppler velocity power maps of active regions observed in the Sun, leading us to propose that the halo has MHD underpinnings.Comment: submitted to Ap

    Star Formation Histories of Nearby Elliptical Galaxies. II. Merger Remnant Sample

    Get PDF
    This work presents high S/NS/N spectroscopic observations of a sample of six suspected merger remnants, selected primarily on the basis of H{\sc i} tidal debris detections. Single stellar population analysis of these galaxies indicates that their ages, metallicities, and α\alpha-enhancement ratios are consistent with those of a representative sample of nearby elliptical galaxies. The expected stellar population of a recent merger remnant, young age combined with low [α\alpha/Fe], is not seen in any H{\sc i}-selected galaxy. However, one galaxy (NGC~2534), is found to deviate from the ZZ-plane in the sense expected for a merger remnant. Another galaxy (NGC~7332), selected by other criteria, best matches the merger remnant expectations.Comment: 12 pages, 10 figures, accepted by A

    Baryonically Closed Galaxy Groups

    Get PDF
    Elliptical galaxies and their groups having the largest L_x/L_B lie close to the locus in the L_x,L_B diagram expected for closed systems with baryon fractions equal to the cosmic mean value, f_b = 0.16. The estimated baryon fractions for several of these galaxies/groups are also close to 0.16 when the gas density is extrapolated to the virial radius. Evidently they are the least massive baryonically closed systems. Gas retention in these groups implies that non-gravitational heating cannot exceed about 1 keV per particle, consistent with the heating required to produce the deviation of groups from the L_x - T correlation for more massive clusters. Isolated galaxies/groups with X-ray luminosities significantly lower than baryonically closed groups may have undermassive dark halos, overactive central AGNs, or higher star formation efficiencies. The virial mass and hot gas temperatures of nearly or completely closed groups correlate with the group X-ray luminosities and the optical luminosities of the group-centered elliptical galaxy, an expected consequence of their merging history. The ratio of halo mass to the mass of the central galaxy for X-ray luminous galaxy/groups is about 80.Comment: 7 pages; Accepted by ApJ Letter

    Damped Lyman alpha Absorbing Galaxies At Low Redshifts z<1 From Hierarchical Galaxy Formation Models

    Full text link
    We investigate Damped Ly-alpha absorbing galaxies (DLA galaxies) at low redshifts z<1 in the hierarchical structure formation scenario to clarify the nature of DLA galaxies because observational data of such galaxies mainly at low redshifts are currently available. We find that our model well reproduces distributions of fundamental properties of DLA galaxies such as luminosities, column densities, impact parameters obtained by optical and near-infrared imagings. Our results suggest that DLA systems primarily consist of low luminosity galaxies with small impact parameters (typical radius about 3 kpc, surface brightness from 22 to 27 mag arcsec^{-2}) similar to low surface brightness (LSB) galaxies. In addition, we investigate selection biases arising from the faintness and from the masking effect which prevents us from identifying a DLA galaxy hidden or contaminated by a point spread function of a background quasar. We find that the latter affects the distributions of DLA properties more seriously rather than the former, and that the observational data are well reproduced only when taking into account the masking effect. The missing rate of DLA galaxies by the masking effect attains 60-90 % in the sample at redshift 0<z<1 when an angular size limit is as small as 1 arcsec. Furthermore we find a tight correlation between HI mass and cross section of DLA galaxies, and also find that HI-rich galaxies with M(HI) \sim 10^{9} M_sun dominate DLA systems. These features are entirely consistent with those from the Arecibo Dual-Beam Survey which is a blind 21 cm survey. Finally we discuss star formation rates, and find that they are typically about 10^{-2} M_sun yr^{-1} as low as those in LSB galaxies.Comment: 21 pages, 13 figures, Accepted for publication in Astrophsical Journa

    Forsterite-Bearing Type B CAI with a Relict Eringaite-Bearing Ultra-Refractory CAI

    Get PDF
    Forsterite-bearing Type B (FoB) Ca,Al-rich inclusions (CAIs) are a rare type of coarse-grained igneous CAIs found almost exclusively in CV3 chondrites [1–5]. Here we describe the mineralogy, petrography, and oxygen-isotope compositions of a FoB CAI Al-2 from Allende containing a relict eringaite-bearing ultra-refractory (UR) inclusion. Eringaite is a Sc-rich garnet [Ca_3(Sc,Y,Ti)_2Si_3O_(12)] that has been recently identified in a cluster of UR inclusion fragments within an amoeboid olivine aggregate in Vigarano [6]

    Isotopes of H, N, and O in H Chondrite Xenoliths

    Get PDF
    Brecciated H chrondites host a variety of xenoliths, including unshocked, phyllosilate-rich carbonaceous chondrites (CCs) [1-2]. The brecciated H chondrite Zag (H3-6) is one of two chondrites to host macroscopic (1 - 5mm), xenolithic crystals of halite (NaCl) with aqueous fluid inclusions and organics [3-4]. A ~1cm CC xenolith in Zag (Zag clast) also encloses halite in its matrix, linking the halite and the xenolith to the same parent object. The Zag clast has mineralogy similar to CI chondrites, but it has a unique bulk oxygen isotopic composition among all meteorites (17O = 1.49 0.04 , 18O = 22.38 0.17 ) and is therefore derived from a uniquely sampled parent object [5-6]. Organics have high bulk D and 15N values with isotopic "hotspots" similar to organics in CR chondrites and Bells (C2-ung.) [6-7]. Bulk 15N is also similar to CRs and Bells [7]. We provide further isotopic characterization of the Zag clast to constrain the formation temperature and origin of its primary and secondary components

    The Star Formation Epoch of the Most Massive Early-Type Galaxies

    Get PDF
    We present new Keck spectroscopy of early-type galaxies in three galaxy clusters at z~0.5. We focus on the fundamental plane (FP) relation, and combine the kinematics with structural parameters determined from HST images. The galaxies obey clear FP relations, which are offset from the FP of the nearby Coma cluster due to passive evolution of the stellar populations. The z~0.5 data are combined with published data for 11 additional clusters at 0.18<z<1.28, to determine the evolution of the mean M/L(B) ratio of cluster galaxies with masses M>10^11 M_sun, as implied by the FP. We find dlog(M/L(B))/dz = -0.555+-0.042, stronger evolution than was previously inferred from smaller samples. The observed evolution depends on the luminosity-weighted mean age of the stars in the galaxies, the initial mass function (IMF), selection effects due to progenitor bias, and other parameters. Assuming a normal IMF but allowing for various other sources of uncertainty we find z* = 2.01+-0.20 for the luminosity-weighted mean star formation epoch. The main uncertainty is the slope of the IMF in the range 1-2 Solar masses: we find z* = 4.0 for a top-heavy IMF with slope x=0. The M/L(B) ratios of the cluster galaxies are compared to those of recently published samples of field early-type galaxies at 0.32<z<1.14. Assuming that progenitor bias and the IMF do not depend on environment we find that the present-day age of stars in massive field galaxies is 4.1 +- 2.0 % (~0.4 Gyr) less than that of stars in massive cluster galaxies, consistent with most, but not all, previous studies of local and distant early-type galaxies. This relatively small age difference is surprising in the context of expectations from ``standard'' hierarchical galaxy formation models. [ABRIDGED]Comment: Accepted for publication in ApJ. Minor corrections to match published versio
    • …
    corecore