7 research outputs found

    One-pot synthesis of hydrophilic flower-shaped iron oxide nanoclusters (IONCs) based ferrofluids for magnetic fluid hyperthermia applications

    No full text
    Herein, flower-shaped hydrophilic superparamagnetic iron oxide nanoclusters (IONCs) are synthesized via one-pot thermolysis of iron acetylacetonate using triethanolamine (TEA) and diethylene glycol (DEG)/tetraethylene glycol (TTEG) mixtures at 9:1, 8:2 and 7:3 (v/v) ratios. The as-prepared 24–29 nm sized IONCs displayed (i) saturation magnetization (Ms) values of ~68–78 emu/g, (ii) hydrodynamic diameters of ~95–192 nm and (iii) zeta potential values of +46 to +65 mV. Due to relatively high magnetization and water solubility, IONCs (prepared using 8:2 TEA:DEG, and 8:2 & 7:3 TEA:TTEG ratios) based aqueous ferrofluids i.e. NCAFF-1, NCAFF-2, and NCAFF-3 are investigated by calorimetric magnetic fluid hyperthermia (MFH) at 0.5–8 mg/ml concentrations by exposing them to the alternating magnetic fields (AMFs, H*f ~2.4–9.9 GA m−1 s−1). The NCAFF-3 demonstrated excellent time dependent temperature rise (42 °C within 0.7–9.7 min) as compared to the NCAFF-1 and NCAFF-2. Moreover, the NCAFF-3 at 0.5 mg/ml concentration exhibited enhanced heating efficacies with specific absorption rate (SAR) and intrinsic loss power (ILP) values of 142.4–909.4 W/gFe and 4.2–14.7 nHm2/kg, respectively. Furthermore, the NCAFF-3 presented better cytocompatibility, and substantially reduced proliferation capacity of HepG2 cancer cells in in vitro MFH studies. Thus, the IONCs based ferrofluids (NCAFF-3) are very promising candidates for MFH therapeutics applications

    One-step synthesis of hydrophilic functionalized and cytocompatible superparamagnetic iron oxide nanoparticles (SPIONs) based aqueous ferrofluids for biomedical applications

    No full text
    This work systematically describes one-step synthesis of hydrophilic functionalized superparamagnetic iron oxide nanoparticies (SPIONs) via thermolysis in presence of polyamines such as diethylene triamine (DETA), triethylene tetraamine (TETA), tetraethylene pentamine (TTEPA), or pentaethylene hexamine (PEHA) or mixture of a polyamine (TETA) and polyols such as diethylene glycol (DEG), triethylene glycol (TEG) or tetraethylene glycol (TTEG) while varying the polyamine: polyol (v/v) ratio, reaction temperature and reaction time, The saturation magnetization (Ms) values of the as-prepared polyamine (DETA/TETA/TTEPA/PEHA) coated SPIONs are determined in the range of 31.8-48.5 emu/g, which is altered in the range of 40.2-57.8 emu/g by the addition of a polyol (DEG/TEG/TTEG) to the polyamine (TETA) at different ratios. Moreover, the Ms. values are further improved to 64.6 and 66.8 emu/g at the optimized TETA:TEG (1:1) ratio by prolonging the reaction time up-to 2 h and the reaction temperature to 270 degrees C, respectively. In addition, the TETA-TEG coated SPIONs have displayed their average particle sizes, hydrodynamic sizes, and zeta potential (zeta) values in the range of 7-11 nm, 99-120 nm and +45 to +57 mV, respectively (indicating high water solubility). Finally, the TETA-TEG coated SPIONs with the highest Ms. and zeta values (i.e. 66.8 emu/g and +57 my) are selected for the biological studies, where they have revealed excellent (i) cytocompatibility, and (ii) intracellular uptake in the cancer (HepG2 liver & MCF-7 breast) cells for the incubation periods of 24/48 h. Thus, the TETA-TEG coated SPIONs based aqueous ferrofluids have a great potential to be used in biomedical applications. (C) 2018 Elsevier B.V. All rights reserved

    Multifunctional magnetic-polymeric nanoparticles based ferrofluids for multi-modal in vitro cancer treatment using thermotherapy and chemotherapy

    No full text
    In this work, we have developed novel multifunctional magnetic-polymeric nanoparticles (MMPNs) based ferrofluids by encapsulating oleylamine (OM)-coated hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) inside the poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) individually, and along with two drugs such as curcumin (Cur, a chemotherapeutic drug (CHD)), and/or verapamil (Ver, a calcium channel blocker (CCB)). Herein, several parameters such as weighed amount (wt%) of PLGA polymer (i.e., Resomer), stabilizer (i.e., polyvinyl alcohol (PVA)), organic solvents, amount of the SPIONs (in liquid suspension and powder forms), and amount of the drugs (i.e., Cur or/and Ver) are varied during the encapsulation process to optimize the formulation of PLGA NPs. The resulting polymeric NPs including empty PLGA NPs (i.e., without SPIONs/drugs), and MMPNs such as SPIONs-loaded PLGA NPs, Cur-SPIONs-loaded PLGA NPs, Ver-SPIONs-loaded PLGA NPs, and Cur-Ver-SPIONs-loaded PLGA NPs have displayed (i) hydrodynamic diameters and zeta potentials in the range of 280.8-2873 nm, and -21 to - 26 mV, respectively, and (ii) better encapsulation efficiency for the SPIONs/Cur/Ver. In addition, the MMPNs have exhibited (i) magnetization values in the range of 7.6-9.5 emu/g with superparamagnetic behaviour, (ii) concentration based time-dependent temperature raise up-to 42 degrees C (minimum therapeutic temperature in magnetic fluid hyperthermia (MFH)/thermotherapy) with heating efficacies i.e., specific absorption rate (SAR) and intrinsic loss power (ILP) values ranging from 7 to 36 W/gFe and 0.1-0.4 nHm(2)/kg, respectively and (iii) better cytocompatibility. Finally, the SPIONs and dual-drugs (Cur &Ver) co-loaded PLGA NPs have shown enhanced therapeutic efficacy in HepG2 cancer cells via combined therapies (i.e., thermotherapy and chemotherapy), as compared to the individual therapy (i.e., thermotherapy or chemotherapy) using the SPIONs/Cur/Ver loaded PLGA NPs. Thus, the as-prepared SPIONs/dual-drugs co-loaded PLGA NPs (i.e., MMPNs based ferrofluids) are potential therapeutic candidates for multi-modal treatment of cancer in vitro using thermotherapy and chemotherapy
    corecore