9 research outputs found
Publisher Correction: Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration.
Funder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265Funder: Max-Planck-Gesellschaft (Max Planck Society); doi: https://doi.org/10.13039/50110000418
Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration.
Funder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265Funder: Max-Planck-Gesellschaft (Max Planck Society); doi: https://doi.org/10.13039/501100004189Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence
Intravenous injection of a novel viral immunotherapy encoding human interleukin-7 in nonhuman primates is safe and increases absolute lymphocyte count
Persistence of an immunosuppression, affecting both the innate and adaptive arms of the immune system, plays a role in sepsis patients’ morbidity and late mortality pointing to the need for broad and effective immune interventions. MVA-hIL-7-Fc is a non-replicative recombinant Modified Vaccinia virus Ankara encoding the human interleukin-7 fused to human IgG2 Fc fragment. We have shown in murine sepsis models the capacity of this new virotherapy to stimulate both arms of the immune system and increase survival. Herein, an exploratory study in nonhuman primates was performed following a single intravenous injection of the MVA-hIL-7-Fc used at the clinical dose to assess its safety and biological activities. Four cynomolgus macaques were followed for 3 weeks post-injection (p.i), without observed acute adverse reactions. Circulating hIL-7-Fc was detected during the first 3–5 days p.i with a detection peaking at 12 h p.i. IL-7 receptor engagement and downstream signal transduction were detected in T cells demonstrating functionality of the expressed IL-7. Expansion of blood lymphocytes, mainly CD4 and CD8 naïve and central memory T cells, was observed on day 7 p.i. together with a transient increase of Ki67 expression on T lymphocytes. In addition, we observed an increase in circulating B and NK cells as well as monocytes were albeit with different kinetics and levels. This study indicates that a vectorized IL-7-Fc, injected by intravenous route at a relevant clinical dose in a large animal model, is active without adverse reactions supporting the clinical development of this novel virotherapy for treatment of sepsis patients
Lymphocytic infiltration in the cutaneous lymphoma microenvironment after injection of TG1042
BACKGROUND: Primary cutaneous lymphomas (CLs), characterized by an accumulation of clonal T or B lymphocytes preferentially localized in the skin, have been successfully treated with interferons (IFNs) which counterbalance the Th2-immunosuppressive state associated with this pathology. In a phase I/II clinical trial, we correlated the local immune infiltrate and the anti-tumor effects of repeated intralesional administrations of an adenovirus vector expressing human interferon-gamma (IFN-g) termed TG1042, in patients with advanced primary cutaneous T-cell lymphomas (CTCL) or multilesional cutaneous B-cell lymphomas (CBCL). METHODS: For each patient, variation in time of specific lymphocyte populations, defined by immunohistochemical stainings, was assessed in biopsies of injected lesions. For each patient, the change in local immune response was associated with the patient's objective response at the end of the study. RESULTS: Immunohistochemical analyses of biopsies indicate that infiltration of CD8+ T lymphocytes and of TIA-1+ cytotoxic T-cells in lesions injected with TG1042 correlates with clinical benefit. CONCLUSIONS: These data suggest for the first time that a CD8+ cytotoxic infiltrate, induced by local expression of IFN-g correlates with a clinical response. TRIAL REGISTRATION: The phase I step (TG1042.01) does not have a registration number. The phase II step (TG1042.06) registration number was NCT00394693
IL-7 producing immunotherapy improves ex vivo T cell functions of immunosenescent patients, especially post hip fracture
Following acute stress such as trauma or sepsis, most of critically ill elderly patients become immunosuppressed and susceptible to secondary infections and enhanced mortality. We have developed a virus-based immunotherapy encoding human interleukin-7 (hIL-7) aiming at restoring both innate an adaptative immune homeostasis in these patients. We assessed the impact of this encoded hIL-7 on the ex vivo immune functions of T cells from PBMC of immunosenescent patients with or without hip fracture. T-cell ex vivo phenotyping was characterized in terms of senescence (CD57), IL-7 receptor (CD127) expression, and T cell differentiation profile. Then, post stimulation, activation status, and functionality (STAT5/STAT1 phosphorylation and T cell proliferation assays) were evaluated by flow cytometry. Our data show that T cells from both groups display immunosenescence features, express CD127 and are activated after stimulation by virotherapy-produced hIL-7-Fc. Interestingly, hip fracture patients exhibit a unique functional ability: An important T cell proliferation occurred compared to controls following stimulation with hIL-7-Fc. In addition, stimulation led to an increased naïve T cell as well as a decreased effector memory T cell proportions compared to controls. This preliminary study indicates that the produced hIL-7-Fc is well recognized by T cells and initiates IL-7 signaling through STAT5 and STAT1 phosphorylation. This signaling efficiently leads to T cell proliferation and activation and enables a T cell “rejuvenation.” These results are in favor of the clinical development of the hIL-7-Fc expressing virotherapy to restore or induce immune T cell responses in immunosenescent hip fracture patients
Celebrating 20 years of SETAC German Language Branch (GLB)
Abstract This editorial presents the objectives and achievements of the German Language Branch of the Society of Environmental Toxicology and Chemistry Europe (SETAC GLB), a regional branch of SETAC Europe, of the last 20 years. SETAC GLB serves Germany, Austria, and Switzerland, by providing an open forum for research related to ecotoxicology and environmental chemistry, to the sustainable management and regulation of natural resources, to education in environmental sciences, as well as to issues related to research and development, and manufacturing of chemicals and products. The editorial serves as an introduction for an article collection published in the journal Environmental Sciences Europe, providing an overview of the current state of ecotoxicology and environmental chemistry in German-speaking countries and of the main developments and key topics within SETAC GLB. The article collection was developed on the occasion of the 20th anniversary of the regional branch of SETAC Europe