34 research outputs found

    Level-Planar Drawings with Few Slopes

    Get PDF
    We introduce and study level-planar straight-line drawings with a fixed number of slopes. For proper level graphs (all edges connect vertices of adjacent levels), we give an ( log2^{2} / log log )-time algorithm that either finds such a drawing or determines that no such drawing exists. Moreover, we consider the partial drawing extension problem, where we seek to extend an immutable drawing of a subgraph to a drawing of the whole graph, and the simultaneous drawing problem, which asks about the existence of drawings of two graphs whose restrictions to their shared subgraph coincide. We present (4/3^{4/3} log )-time and (10/3^{10/3} log )-time algorithms for these respective problems on proper level-planar graphs. We complement these positive results by showing that testing whether non-proper level graphs admit level-planar drawings with slopes is NP-hard even in restricted cases

    Kara Women in Motion: Putting into Action an Association for More Development, Power and Security

    Get PDF
    Terms like “Empowerment of Women” and "Engendering Development" are central in debates about the fulfilment of the Millennium Development Goals for 2015. The aim is to support men and women in their ability and possibility to operate and participate freely and under equal conditions, to become active and productive, to use their potential and resources for the well-being of their family, society and their own. These global premises should be guaranteed for all people and thus they meet differ..

    Eine neue Methode zur Determinierung von Kiefergelenkskonfigurationen bei Kollumfrakturen auf der Grundlage von Standardröntgenuntersuchungen

    Full text link
    Ziel der Studie war die Evaluation eines neuen Verfahrens zur schnellen Beurteilung der Kiefergelenkkonfigurationen bei Kollumfrakturen auf der Grundlage von Standardröntgenuntersuchungen. Es wurden von 207 Patienten Informationen über die Unfallursache bzw. Therapieverlauf mittels eines Datenerhebungsbogens festgehalten und mit den Programmen Excel und SPSS statistisch ausgewertet. Zur Messung der Abweichung des frakturierten Kiefergelenkköpfchens wurden nach Digitalisierung sowohl in der Aufnahme nach Clementschitsch als auch in dem OPG Punkte und Ebenen entsprechend der XX-Punkte-Analyse (FRS-Analyse nach Münster) konstruiert. Bei Behandlungsabschluss waren 98 Prozent der Patienten subjektiv beschwerdefrei. Die röntgenologische Auswertung ergab einen Unterschied bzgl. Winkeldifferenzen und Höhendifferenzen zwischen den Ergebnissen der chirurgisch versorgten Patienten gegenüber denen der konservativ-funktionell versorgten Patienten

    The unexpectedly short Holocene Humid Period in Northern Arabia

    Get PDF
    The early to middle Holocene Humid Period led to a greening of today’s arid Saharo-Arabian desert belt. While this phase is well defined in North Africa and the Southern Arabian Peninsula, robust evidence from Northern Arabia is lacking. Here we fill this gap with unprecedented annually to sub-decadally resolved proxy data from Tayma, the only known varved lake sediments in Northern Arabia. Based on stable isotopes, micro-facies analyses and varve and radiocarbon dating, we distinguish five phases of lake development and show that the wet phase in Northern Arabia from 8800–7900 years BP is considerably shorter than the commonly defined Holocene Humid Period (~11,000–5500 years BP). Moreover, we find a two century-long peak humidity at times when a centennial-scale dry anomaly around 8200 years BP interrupted the Holocene Humid Period in adjacent regions. The short humid phase possibly favoured Neolithic migrations into Northern Arabia representing a strong human response to environmental changes

    Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity

    Get PDF
    Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development

    Cyclin-Dependent Kinases (CDKs) and the Human Cytomegalovirus-Encoded CDK Ortholog pUL97 Represent Highly Attractive Targets for Synergistic Drug Combinations

    No full text
    Human cytomegalovirus (HCMV) is a pathogenic human herpesvirus associated with serious, potentially life-threatening symptoms in the immunocompromised or immunonaïve host. The limitations encountered by antiviral therapy options currently available include a narrow panel of accessible targets, the induction of viral drug resistance as well as severe drug dosage-mediated side-effects. Improved drug-targeting strategies to resolve these issues are the focus of our investigations. In particular, pharmaceutical kinase inhibitors (PKIs), either directed to host kinases or directed to the viral protein kinase pUL97, have been considered to overcome these restrictions. Recently, we reported the identification of a synergistic combination of two PKIs directed to host cyclin-dependent kinase 7 (CDK7) and viral CDK ortholog pUL97. Here, we substantiate these findings with the following results: (i) true drug synergy was exhibited by various chemical classes of PKI pairs directed to pUL97 and CDK7; (ii) no putative amplification of cytotoxicity by these drug combinations was observed; (iii) a reduction in drug dosage levels for synergistic combinations was defined on a quantitative basis and compared to monotreatments; (iv) the quantities of target proteins CDK7 and pUL97 expressed in HCMV-infected cells were assessed by confocal imaging, indicating a strong down-modulation of CDK7 levels as a result of synergistic drug treatment; (v) the functional importance of these target kinases, both binding to cyclin H, was illustrated by assessing HCMV replication under the viral genomic deletion of ORF-UL97 or cellular cyclin knock-out; (vi) new combinations of HCMV-specific drug synergy were demonstrated for solely host-directed treatments using PKIs against CDK2, CDK7, CDK8 and/or CDK9 and (vii) a triple PKI combination provided further support for the synergy approach. With these combined findings, this study highlights the potential of therapeutic drug combinations of approved, developmental and preclinical PKIs for expanding future options for anti-HCMV therapy

    Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity

    No full text
    Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development

    An Antiherpesviral Host-Directed Strategy Based on CDK7 Covalently Binding Drugs: Target-Selective, Picomolar-Dose, Cross-Virus Reactivity

    No full text
    The repertoire of currently available antiviral drugs spans therapeutic applications against a number of important human pathogens distributed worldwide. These include cases of the pandemic severe acute respiratory coronavirus type 2 (SARS-CoV-2 or COVID-19), human immunodeficiency virus type 1 (HIV-1 or AIDS), and the pregnancy- and posttransplant-relevant human cytomegalovirus (HCMV). In almost all cases, approved therapies are based on direct-acting antivirals (DAAs), but their benefit, particularly in long-term applications, is often limited by the induction of viral drug resistance or side effects. These issues might be addressed by the additional use of host-directed antivirals (HDAs). As a strong input from long-term experiences with cancer therapies, host protein kinases may serve as HDA targets of mechanistically new antiviral drugs. The study demonstrates such a novel antiviral strategy by targeting the major virus-supportive host kinase CDK7. Importantly, this strategy focuses on highly selective, 3D structure-derived CDK7 inhibitors carrying a warhead moiety that mediates covalent target binding. In summary, the main experimental findings of this study are as follows: (1) the in vitro verification of CDK7 inhibition and selectivity that confirms the warhead covalent-binding principle (by CDK-specific kinase assays), (2) the highly pronounced antiviral efficacies of the hit compounds (in cultured cell-based infection models) with half-maximal effective concentrations that reach down to picomolar levels, (3) a particularly strong potency of compounds against strains and reporter-expressing recombinants of HCMV (using infection assays in primary human fibroblasts), (4) additional activity against further herpesviruses such as animal CMVs and VZV, (5) unique mechanistic properties that include an immediate block of HCMV replication directed early (determined by Western blot detection of viral marker proteins), (6) a substantial drug synergism in combination with MBV (measured by a Loewe additivity fixed-dose assay), and (7) a strong sensitivity of clinically relevant HCMV mutants carrying MBV or ganciclovir resistance markers. Combined, the data highlight the huge developmental potential of this host-directed antiviral targeting concept utilizing covalently binding CDK7 inhibitors

    New Role of the Disulfide Stress Effector YjbH in β-Lactam Susceptibility of Staphylococcus aureus ▿

    No full text
    Staphylococcus aureus is exposed to multiple antimicrobial compounds, including oxidative burst products and antibiotics. The various mechanisms and regulatory pathways governing susceptibility or resistance are complex and only superficially understood. Bacillus subtilis recently has been shown to control disulfide stress responses by the thioredoxin-related YjbH protein, which binds to the transcriptional regulator Spx and controls its degradation via the proteasome-like ClpXP protease. We show that the S. aureus YjbH homolog has a role in susceptibility to the disulfide stress-inducing agent diamide that is similar to that in B. subtilis, and we demonstrate that the four cysteine residues in YjbH are required for this activity. In addition, the inactivation of YjbH led to moderate resistance to oxacillin and other β-lactam antibiotics, and this phenotypic change was associated with higher penicillin-binding protein 4 levels and increased peptidoglycan cross-linking. Of note, the impact of YjbH on β-lactam susceptibility still was observed when the four cysteines of YjbH were mutated, indicating that the roles of YjbH in disulfide stress and β-lactam resistance rely on different types of interactions. These data suggest that the ClpXP adaptor YjbH has more target proteins than previously thought, and that oxidative burst and β-lactam resistance mechanisms of S. aureus are closely linked
    corecore