31 research outputs found

    Omenn Syndrome : Two Case Reports

    Get PDF
    Omenn syndrome is a variant of combined severe immunodeficiencydue to mutations in RAG genes. It is characterized by polymorph symptoms andlethal outcome. We report on two cases of Omenn syndrome. Infants were aged 50and 46 days. The clinical and biological signs were typical and complete in the firstcase. In the second case, only the cutaneous signs were present. Diagnosis was confirmedby genetic study. The Rag1 T631 mutation was found in these two patients.Hematopoietic stem cell transplantation could not be done and the evolution wasfatal in both cases because of severe infectious episodes. Prenatal diagnosis wasperformed in the two families and each family has currently a healthy child. In conclusion,early diagnosis of Omenn syndrome may avoid infectious complicationsresponsible for delay in therapeutic management. Genetic study confirms the diagnosis.The treatment usually consists of hematopoietic stem cell transplantationin association with immunosuppressive drugs. Prenatal diagnosis is very importantto allow parents to have healthy children.</p

    A severe clinical phenotype of Noonan syndrome with neonatal hypertrophic cardiomyopathy in the second case worldwide with RAF1 S259Y neomutation

    Get PDF
    International audienceNoonan syndrome and related disorders are a group of clinically and genetically heterogeneous conditions caused by mutations in genes of the RAS/MAPK pathway. Noonan syndrome causes multiple congenital anomalies, which are frequently accompanied by hypertrophic cardiomyopathy (HCM). We report here a Tunisian patient with a severe phenotype of Noonan syndrome including neonatal HCM, facial dysmorphism, severe failure to thrive, cutaneous abnormalities, pectus excavatum and severe stunted growth, who died in her eighth month of life. Using whole exome sequencing, we identified a de novo mutation in exon 7 of the RAF1 gene: c.776C > A (p.Ser259Tyr). This mutation affects a highly conserved serine residue, a main mediator of Raf-1 inhibition via phosphorylation. To our knowledge the c.776C > A mutation has been previously reported in only one case with prenatally diagnosed Noonan syndrome. Our study further supports the striking correlation of RAF1 mutations with HCM and highlights the clinical severity of Noonan syndrome associated with a RAF1 p.Ser259Tyr mutation

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Etude cinétique et optimisation multicritÚres du couplage déshydratation imprégnation par immersion : séchage convectif de la poire, la pomme et l'abricot

    No full text
    The aim of this work was the study of the impact of both drying processes: dehydration-impregnation by soaking (DIS) and convective drying performed separately or in combination on mass transfers of water and sucrose and on the main quality characteristics of the fruit (total difference of colour, total phenols (TP) and ascorbic acid (AA) contents, shrinking, water activity) by taking the pear Conference as a model. The processes effect on the pieces of pear was apprehended according two approaches: (i) a global study of the impact of the variables of commands on the quality of finished product and (ii) a kinetic study of nutritional compounds and the quality (colour, shrinkage, and water activity). Central Composite Design with four factors (sucrose concentration: 25-65 %, temperature: 20-60 °C, immersion time: 0.5-6.5 hr and drying temperature: 30-70 °C) at five levels each was used for pears processing. During DIS, the variables: immersion time, temperature and concentration of sucrose solution had a significant effect (p<0.01) in the loss of water, the solid gain and the quality attributes of pears. The losses in AA are higher than those in TP and are essentially due to the oxidation and the leaching with water. During the convective drying, the losses in TP and in AA depend more on the time of the process rather than the temperature of exposition. They reach respectively 80% and 34% after 10 h of drying at 30 °C. The color change of pear depends on the time and temperature of treatment and is more pronounced at the end of drying. Predictive and quadratic models were suggested to link the responses variables (aw, total colour difference, TP loss and total time treatment) to operational parameters of both studied processes. The losses in AA decrease linearly with the duration of DIS. A multicriteria optimization using response surface methodology (RSM) was proposed (minimal losses in TP and in AA, reduced total processing time and total difference in colour and an aw inferior to 0.6) for the combination DIS/convective drying. The optimal conditions are: osmotic solution at 28°C and 25°Brix, a DIS lasting 30 min and a convective drying at 60 °C. Otherwise, the temperature effects (30, 45 and 60 °C) and the sucrose impregnation by DIS (10 and 65 min, 70°Brix, 30 °C) upon the desorption isotherms and the transition temperature (Tg) of pears, apples and apricots were determined. The sucrose impregnation diminishes the influence of temperature on its sorption ability. It generates a depressing effect on water activity and a rise of pear hygroscopicity, apple and apricot at a high temperature. The desorption isotherms of fresh and sucrose impregnated apricot present a crossing of curves which mark the inverse of the effect of temperature on isotherms. The Tg depends on the temperature, the sucrose content and the fruit water content (X). For constant water content, the rise of temperature and of the duration de DIS result in the increase of Tg. The phase diagrams (Tg=f(X) et Tg=f(aw)) of fruits were established at 30, 45 and 60°C and the critical water content as well as the critical water activities were determined. Water content at the end of drying inferior or equal to 0.02 g/g d.b. is recommended to obtain stable fruit pieces at microbiological, physiochemical and rheological levels.Ce travail avait pour objectif l'Ă©tude de l'impact des deux procĂ©dĂ©s : la dĂ©shydratation imprĂ©gnation par immersion (DII) et le sĂ©chage convectif menĂ©s sĂ©parĂ©ment ou combinĂ©s sur les transferts couplĂ©s d'eau et de saccharose et les principaux critĂšres de qualitĂ© de fruit (Ă©cart de couleur, teneur en phĂ©nols totaux (PT), teneur en acide ascorbique (AA), retrait volumique, activitĂ© de l'eau) en prenant la poire ConfĂ©rences comme modĂšle. L'effet des procĂ©dĂ©s sur les morceaux de poire a Ă©tĂ© apprĂ©hendĂ© selon deux approches : (i) une Ă©tude globale de l'impact des variables de commandes sur la qualitĂ© du produit fini et (ii) une Ă©tude cinĂ©tique des composĂ©s d'intĂ©rĂȘt nutritionnel et de la qualitĂ© (couleur, retrait, activitĂ© de l'eau).Un plan d'expĂ©riences composite centrĂ© Ă  quatre facteurs et cinq niveaux a Ă©tĂ© Ă©tabli (concentration en saccharose de la solution osmotique : 25-65%, tempĂ©rature de DII : 20-60 °C, durĂ©e de la DII : 0,5-6,5 h, tempĂ©rature du sĂ©chage convectif : 30-70 °C) pour Ă©tudier l'effet global des procĂ©dĂ©s sur le produit fini. En DII, les paramĂštres « °Brix, « durĂ©e » et « la tempĂ©rature de la solution » ont un effet significatif (p < 0,01) sur les pertes en eau, le gain en solutĂ© et les attributs de qualitĂ© de morceaux de poire. Les pertes en AA sont plus Ă©levĂ©es que les pertes en PT et sont essentiellement dues Ă  l'oxydation et Ă  l'entraĂźnement par l'eau. Durant le sĂ©chage convectif, les pertes en PT et en AA dĂ©pendent plus de la durĂ©e du procĂ©dĂ© que de la tempĂ©rature d'exposition. Elles atteignent respectivement 80% et 34% aprĂšs 10 h de sĂ©chage Ă  30 °C. Le changement de couleur de morceaux de poire dĂ©pend de la durĂ©e et de la tempĂ©rature de traitement et est plus prononcĂ© en fin de sĂ©chage. Des modĂšles quadratiques prĂ©dictifs ont Ă©tĂ© proposĂ©s pour relier les variables de rĂ©ponse (aw, diffĂ©rence de couleur, perte en PT et durĂ©e totale de traitement) aux paramĂštres opĂ©ratoires des deux procĂ©dĂ©s Ă©tudiĂ©s. Cependant, la perte en AA dĂ©croit linĂ©airement avec la durĂ©e de DII. Une optimisation multicritĂšres en utilisant la mĂ©thodologie des surfaces de rĂ©ponse (MSR) a Ă©tĂ© proposĂ©e (pertes minimales en PT et en AA, durĂ©e totale du traitement et diffĂ©rence de couleur rĂ©duites et une aw infĂ©rieure Ă  0,6) pour la combinaison DII/sĂ©chage. Les conditions optimales sont : solution osmotique Ă  28°C et 25°Brix, une durĂ©e de DII de 30 min et un sĂ©chage convectif Ă  60 °C. Par ailleurs, les effets de la tempĂ©rature (30, 45 et 60 °C) et de l'imprĂ©gnation en saccharose par DII (10 et 65 min, 70°Brix, 30 °C) sur les isothermes de dĂ©sorption et sur la tempĂ©rature de transition vitreuse (Tg) de morceaux de poires, de pommes et d'abricots ont Ă©tĂ© dĂ©terminĂ©s. L'imprĂ©gnation en saccharose du tissu vĂ©gĂ©tal attĂ©nue l'influence de la tempĂ©rature sur sa capacitĂ© de sorption. Elle engendre un effet dĂ©presseur de l'activitĂ© de l'eau et une augmentation de l'hygroscopicitĂ© de la poire, la pomme et l'abricot Ă  tempĂ©rature Ă©levĂ©e. Les isothermes de dĂ©sorption des abricots frais et enrichis en saccharose prĂ©sentent un croisement des courbes marquant l'inversement de l'effet de la tempĂ©rature sur les isothermes. La Tg dĂ©pend de la tempĂ©rature, de la teneur en saccharose et de la teneur en eau des fruits. Pour une teneur en eau constante, l'augmentation de la tempĂ©rature et la durĂ©e de DII se traduisent par l'augmentation de la Tg. Les digrammes de phase (Tg=f(X) et Tg=f(aw)) des fruits ont Ă©tĂ© Ă©tablis Ă  30, 45 et 60°C et les teneurs en eau critiques ainsi que les activitĂ©s d'eau critiques ont Ă©tĂ© dĂ©terminĂ©es. Une teneur en eau en fin de sĂ©chage infĂ©rieure ou Ă©gale Ă  0,02 g/g M.S. est recommandĂ©e pour l'obtention de morceaux de fruit stables aux niveaux microbiologique, physicochimique et rhĂ©ologique

    Kinetic investigation and multicriteria optimization of dehydration impregnation : by soaking combined to convective drying of pear, apple and apricot

    No full text
    Ce travail avait pour objectif l'Ă©tude de l'impact des deux procĂ©dĂ©s : la dĂ©shydratation imprĂ©gnation par immersion (DII) et le sĂ©chage convectif menĂ©s sĂ©parĂ©ment ou combinĂ©s sur les transferts couplĂ©s d'eau et de saccharose et les principaux critĂšres de qualitĂ© de fruit (Ă©cart de couleur, teneur en phĂ©nols totaux (PT), teneur en acide ascorbique (AA), retrait volumique, activitĂ© de l'eau) en prenant la poire ConfĂ©rences comme modĂšle. L'effet des procĂ©dĂ©s sur les morceaux de poire a Ă©tĂ© apprĂ©hendĂ© selon deux approches : (i) une Ă©tude globale de l'impact des variables de commandes sur la qualitĂ© du produit fini et (ii) une Ă©tude cinĂ©tique des composĂ©s d'intĂ©rĂȘt nutritionnel et de la qualitĂ© (couleur, retrait, activitĂ© de l'eau).Un plan d'expĂ©riences composite centrĂ© Ă  quatre facteurs et cinq niveaux a Ă©tĂ© Ă©tabli (concentration en saccharose de la solution osmotique : 25-65%, tempĂ©rature de DII : 20-60 °C, durĂ©e de la DII : 0,5-6,5 h, tempĂ©rature du sĂ©chage convectif : 30-70 °C) pour Ă©tudier l'effet global des procĂ©dĂ©s sur le produit fini. En DII, les paramĂštres « °Brix, « durĂ©e » et « la tempĂ©rature de la solution » ont un effet significatif (p < 0,01) sur les pertes en eau, le gain en solutĂ© et les attributs de qualitĂ© de morceaux de poire. Les pertes en AA sont plus Ă©levĂ©es que les pertes en PT et sont essentiellement dues Ă  l'oxydation et Ă  l'entraĂźnement par l'eau. Durant le sĂ©chage convectif, les pertes en PT et en AA dĂ©pendent plus de la durĂ©e du procĂ©dĂ© que de la tempĂ©rature d'exposition. Elles atteignent respectivement 80% et 34% aprĂšs 10 h de sĂ©chage Ă  30 °C. Le changement de couleur de morceaux de poire dĂ©pend de la durĂ©e et de la tempĂ©rature de traitement et est plus prononcĂ© en fin de sĂ©chage. Des modĂšles quadratiques prĂ©dictifs ont Ă©tĂ© proposĂ©s pour relier les variables de rĂ©ponse (aw, diffĂ©rence de couleur, perte en PT et durĂ©e totale de traitement) aux paramĂštres opĂ©ratoires des deux procĂ©dĂ©s Ă©tudiĂ©s. Cependant, la perte en AA dĂ©croit linĂ©airement avec la durĂ©e de DII. Une optimisation multicritĂšres en utilisant la mĂ©thodologie des surfaces de rĂ©ponse (MSR) a Ă©tĂ© proposĂ©e (pertes minimales en PT et en AA, durĂ©e totale du traitement et diffĂ©rence de couleur rĂ©duites et une aw infĂ©rieure Ă  0,6) pour la combinaison DII/sĂ©chage. Les conditions optimales sont : solution osmotique Ă  28°C et 25°Brix, une durĂ©e de DII de 30 min et un sĂ©chage convectif Ă  60 °C. Par ailleurs, les effets de la tempĂ©rature (30, 45 et 60 °C) et de l'imprĂ©gnation en saccharose par DII (10 et 65 min, 70°Brix, 30 °C) sur les isothermes de dĂ©sorption et sur la tempĂ©rature de transition vitreuse (Tg) de morceaux de poires, de pommes et d'abricots ont Ă©tĂ© dĂ©terminĂ©s. L'imprĂ©gnation en saccharose du tissu vĂ©gĂ©tal attĂ©nue l'influence de la tempĂ©rature sur sa capacitĂ© de sorption. Elle engendre un effet dĂ©presseur de l'activitĂ© de l'eau et une augmentation de l'hygroscopicitĂ© de la poire, la pomme et l'abricot Ă  tempĂ©rature Ă©levĂ©e. Les isothermes de dĂ©sorption des abricots frais et enrichis en saccharose prĂ©sentent un croisement des courbes marquant l'inversement de l'effet de la tempĂ©rature sur les isothermes. La Tg dĂ©pend de la tempĂ©rature, de la teneur en saccharose et de la teneur en eau des fruits. Pour une teneur en eau constante, l'augmentation de la tempĂ©rature et la durĂ©e de DII se traduisent par l'augmentation de la Tg. Les digrammes de phase (Tg=f(X) et Tg=f(aw)) des fruits ont Ă©tĂ© Ă©tablis Ă  30, 45 et 60°C et les teneurs en eau critiques ainsi que les activitĂ©s d'eau critiques ont Ă©tĂ© dĂ©terminĂ©es. Une teneur en eau en fin de sĂ©chage infĂ©rieure ou Ă©gale Ă  0,02 g/g M.S. est recommandĂ©e pour l'obtention de morceaux de fruit stables aux niveaux microbiologique, physicochimique et rhĂ©ologique.The aim of this work was the study of the impact of both drying processes: dehydration-impregnation by soaking (DIS) and convective drying performed separately or in combination on mass transfers of water and sucrose and on the main quality characteristics of the fruit (total difference of colour, total phenols (TP) and ascorbic acid (AA) contents, shrinking, water activity) by taking the pear Conference as a model. The processes effect on the pieces of pear was apprehended according two approaches: (i) a global study of the impact of the variables of commands on the quality of finished product and (ii) a kinetic study of nutritional compounds and the quality (colour, shrinkage, and water activity). Central Composite Design with four factors (sucrose concentration: 25-65 %, temperature: 20-60 °C, immersion time: 0.5-6.5 hr and drying temperature: 30-70 °C) at five levels each was used for pears processing. During DIS, the variables: immersion time, temperature and concentration of sucrose solution had a significant effect (p<0.01) in the loss of water, the solid gain and the quality attributes of pears. The losses in AA are higher than those in TP and are essentially due to the oxidation and the leaching with water. During the convective drying, the losses in TP and in AA depend more on the time of the process rather than the temperature of exposition. They reach respectively 80% and 34% after 10 h of drying at 30 °C. The color change of pear depends on the time and temperature of treatment and is more pronounced at the end of drying. Predictive and quadratic models were suggested to link the responses variables (aw, total colour difference, TP loss and total time treatment) to operational parameters of both studied processes. The losses in AA decrease linearly with the duration of DIS. A multicriteria optimization using response surface methodology (RSM) was proposed (minimal losses in TP and in AA, reduced total processing time and total difference in colour and an aw inferior to 0.6) for the combination DIS/convective drying. The optimal conditions are: osmotic solution at 28°C and 25°Brix, a DIS lasting 30 min and a convective drying at 60 °C. Otherwise, the temperature effects (30, 45 and 60 °C) and the sucrose impregnation by DIS (10 and 65 min, 70°Brix, 30 °C) upon the desorption isotherms and the transition temperature (Tg) of pears, apples and apricots were determined. The sucrose impregnation diminishes the influence of temperature on its sorption ability. It generates a depressing effect on water activity and a rise of pear hygroscopicity, apple and apricot at a high temperature. The desorption isotherms of fresh and sucrose impregnated apricot present a crossing of curves which mark the inverse of the effect of temperature on isotherms. The Tg depends on the temperature, the sucrose content and the fruit water content (X). For constant water content, the rise of temperature and of the duration de DIS result in the increase of Tg. The phase diagrams (Tg=f(X) et Tg=f(aw)) of fruits were established at 30, 45 and 60°C and the critical water content as well as the critical water activities were determined. Water content at the end of drying inferior or equal to 0.02 g/g d.b. is recommended to obtain stable fruit pieces at microbiological, physiochemical and rheological levels

    Upgrade of Corrosiveness Nature of Fish Waste Bio-Oil Using a Hybrid Catalyst (MgO/Na2CO3) Optimization Process

    No full text
    ASME Fluids Engineering Division Summer Meeting, Incline Village, NV, ă JUL 07-11, 2013International audienceIn this work, catalytic cracking of waste fish oil (WFO) to bio-fuel for ă diesel engine was studied over hybrid catalysts (Sodium carbonate ă Na2CO3/Magnesium oxide). The experiments were conducted using a fix-bed ă reactor. The effect of catalyst-to-WFO ratio and the amount of each ă catalyst were studied over the yields of bio-oil and acid value AV, of ă the bio-oil following central composite design (CCD). The statistical ă analysis showed that catalyst significantly affected the bio-oil yield ă and acid value. A higher bio-oil yield over 70 wt% with a lower acid ă value (2.7 mg(KOH)/g(oil)) were identified at catalyst-to-WFO of 1:7 by ă using the same amount of sodium carbonate and magnesium oxide. The ă optimum bio-oil was analyzed and properties have been investigated and ă compared to diesel fuel physical properties

    Performance and Emissions of Diesel Engine Using Bio-Fuel Derived From Waste Fish Oil

    No full text
    International audienceIn the present work, waste fish fat from fish processing industry is considered as an energy source for diesel engines. In this regard, catalytic cracking process is considered for this present study. The physical and chemical properties of biofuel are very close to diesel fuel. The experiments were conducted in a single cylinder diesel engine to study the performance, emission and combustion characteristics of biofuel. As a result, fuel undergoes good combustion and hence there is significant improvement in performance and reduction in emissions. Experimental results indicate a marginal increase in brake thermal efficiency at all loads compared to diesel fuel. The results show that despite of high NOx and CO2, the engine has lesser UHC, CO and PM than standard diesel fuel. The premixed and diffusion combustion duration is decreased with biofuel compared to diesel fuel. The engine was running smooth at all load conditions with biofuel. It is concluded that the biofuel derived from waste fish fat can be consider as a substitute for diesel fuel

    Etude cinétique et optimisation multicritÚres du couplage déshydratation imprégnation par immersion (séchage convectif de la poire, la pomme et l'abricot)

    No full text
    Ce travail avait pour objectif l'Ă©tude de l'impact des deux procĂ©dĂ©s : la dĂ©shydratation imprĂ©gnation par immersion (DII) et le sĂ©chage convectif menĂ©s sĂ©parĂ©ment ou combinĂ©s sur les transferts couplĂ©s d'eau et de saccharose et les principaux critĂšres de qualitĂ© de fruit (Ă©cart de couleur, teneur en phĂ©nols totaux (PT), teneur en acide ascorbique (AA), retrait volumique, activitĂ© de l'eau) en prenant la poire ConfĂ©rences comme modĂšle. L'effet des procĂ©dĂ©s sur les morceaux de poire a Ă©tĂ© apprĂ©hendĂ© selon deux approches : (i) une Ă©tude globale de l'impact des variables de commandes sur la qualitĂ© du produit fini et (ii) une Ă©tude cinĂ©tique des composĂ©s d'intĂ©rĂȘt nutritionnel et de la qualitĂ© (couleur, retrait, activitĂ© de l'eau).Un plan d'expĂ©riences composite centrĂ© Ă  quatre facteurs et cinq niveaux a Ă©tĂ© Ă©tabli (concentration en saccharose de la solution osmotique : 25-65%, tempĂ©rature de DII : 20-60 C, durĂ©e de la DII : 0,5-6,5 h, tempĂ©rature du sĂ©chage convectif : 30-70 C) pour Ă©tudier l'effet global des procĂ©dĂ©s sur le produit fini. En DII, les paramĂštres Brix, durĂ©e et la tempĂ©rature de la solution ont un effet significatif (p < 0,01) sur les pertes en eau, le gain en solutĂ© et les attributs de qualitĂ© de morceaux de poire. Les pertes en AA sont plus Ă©levĂ©es que les pertes en PT et sont essentiellement dues Ă  l'oxydation et Ă  l'entraĂźnement par l'eau. Durant le sĂ©chage convectif, les pertes en PT et en AA dĂ©pendent plus de la durĂ©e du procĂ©dĂ© que de la tempĂ©rature d'exposition. Elles atteignent respectivement 80% et 34% aprĂšs 10 h de sĂ©chage Ă  30 C. Le changement de couleur de morceaux de poire dĂ©pend de la durĂ©e et de la tempĂ©rature de traitement et est plus prononcĂ© en fin de sĂ©chage. Des modĂšles quadratiques prĂ©dictifs ont Ă©tĂ© proposĂ©s pour relier les variables de rĂ©ponse (aw, diffĂ©rence de couleur, perte en PT et durĂ©e totale de traitement) aux paramĂštres opĂ©ratoires des deux procĂ©dĂ©s Ă©tudiĂ©s. Cependant, la perte en AA dĂ©croit linĂ©airement avec la durĂ©e de DII. Une optimisation multicritĂšres en utilisant la mĂ©thodologie des surfaces de rĂ©ponse (MSR) a Ă©tĂ© proposĂ©e (pertes minimales en PT et en AA, durĂ©e totale du traitement et diffĂ©rence de couleur rĂ©duites et une aw infĂ©rieure Ă  0,6) pour la combinaison DII/sĂ©chage. Les conditions optimales sont : solution osmotique Ă  28C et 25Brix, une durĂ©e de DII de 30 min et un sĂ©chage convectif Ă  60 C. Par ailleurs, les effets de la tempĂ©rature (30, 45 et 60 C) et de l'imprĂ©gnation en saccharose par DII (10 et 65 min, 70Brix, 30 C) sur les isothermes de dĂ©sorption et sur la tempĂ©rature de transition vitreuse (Tg) de morceaux de poires, de pommes et d'abricots ont Ă©tĂ© dĂ©terminĂ©s. L'imprĂ©gnation en saccharose du tissu vĂ©gĂ©tal attĂ©nue l'influence de la tempĂ©rature sur sa capacitĂ© de sorption. Elle engendre un effet dĂ©presseur de l'activitĂ© de l'eau et une augmentation de l'hygroscopicitĂ© de la poire, la pomme et l'abricot Ă  tempĂ©rature Ă©levĂ©e. Les isothermes de dĂ©sorption des abricots frais et enrichis en saccharose prĂ©sentent un croisement des courbes marquant l'inversement de l'effet de la tempĂ©rature sur les isothermes. La Tg dĂ©pend de la tempĂ©rature, de la teneur en saccharose et de la teneur en eau des fruits. Pour une teneur en eau constante, l'augmentation de la tempĂ©rature et la durĂ©e de DII se traduisent par l'augmentation de la Tg. Les digrammes de phase (Tg=f(X) et Tg=f(aw)) des fruits ont Ă©tĂ© Ă©tablis Ă  30, 45 et 60C et les teneurs en eau critiques ainsi que les activitĂ©s d'eau critiques ont Ă©tĂ© dĂ©terminĂ©es. Une teneur en eau en fin de sĂ©chage infĂ©rieure ou Ă©gale Ă  0,02 g/g M.S. est recommandĂ©e pour l'obtention de morceaux de fruit stables aux niveaux microbiologique, physicochimique et rhĂ©ologique.The aim of this work was the study of the impact of both drying processes: dehydration-impregnation by soaking (DIS) and convective drying performed separately or in combination on mass transfers of water and sucrose and on the main quality characteristics of the fruit (total difference of colour, total phenols (TP) and ascorbic acid (AA) contents, shrinking, water activity) by taking the pear Conference as a model. The processes effect on the pieces of pear was apprehended according two approaches: (i) a global study of the impact of the variables of commands on the quality of finished product and (ii) a kinetic study of nutritional compounds and the quality (colour, shrinkage, and water activity). Central Composite Design with four factors (sucrose concentration: 25-65 %, temperature: 20-60 C, immersion time: 0.5-6.5 hr and drying temperature: 30-70 C) at five levels each was used for pears processing. During DIS, the variables: immersion time, temperature and concentration of sucrose solution had a significant effect (p<0.01) in the loss of water, the solid gain and the quality attributes of pears. The losses in AA are higher than those in TP and are essentially due to the oxidation and the leaching with water. During the convective drying, the losses in TP and in AA depend more on the time of the process rather than the temperature of exposition. They reach respectively 80% and 34% after 10 h of drying at 30 C. The color change of pear depends on the time and temperature of treatment and is more pronounced at the end of drying. Predictive and quadratic models were suggested to link the responses variables (aw, total colour difference, TP loss and total time treatment) to operational parameters of both studied processes. The losses in AA decrease linearly with the duration of DIS. A multicriteria optimization using response surface methodology (RSM) was proposed (minimal losses in TP and in AA, reduced total processing time and total difference in colour and an aw inferior to 0.6) for the combination DIS/convective drying. The optimal conditions are: osmotic solution at 28C and 25Brix, a DIS lasting 30 min and a convective drying at 60 C. Otherwise, the temperature effects (30, 45 and 60 C) and the sucrose impregnation by DIS (10 and 65 min, 70Brix, 30 C) upon the desorption isotherms and the transition temperature (Tg) of pears, apples and apricots were determined. The sucrose impregnation diminishes the influence of temperature on its sorption ability. It generates a depressing effect on water activity and a rise of pear hygroscopicity, apple and apricot at a high temperature. The desorption isotherms of fresh and sucrose impregnated apricot present a crossing of curves which mark the inverse of the effect of temperature on isotherms. The Tg depends on the temperature, the sucrose content and the fruit water content (X). For constant water content, the rise of temperature and of the duration de DIS result in the increase of Tg. The phase diagrams (Tg=f(X) et Tg=f(aw)) of fruits were established at 30, 45 and 60C and the critical water content as well as the critical water activities were determined. Water content at the end of drying inferior or equal to 0.02 g/g d.b. is recommended to obtain stable fruit pieces at microbiological, physiochemical and rheological levels.PARIS-AgroParisTech Centre Paris (751052302) / SudocSudocFranceF

    Experimental analysis of biofuel as an alternative fuel for diesel engines

    No full text
    International audienceThe growth of energy demand and limited fossil fuel resources lead to renewable energy development such as vegetable oils and animal fats or their derivatives. In the present work, the valuation of waste fish fat by the pyrolysis technique with the presence of catalyst to produce biofuel for diesel engines. As a result, fuel undergoes good combustion and hence there is a significant improvement in performance and reduction in emissions. The brake thermal efficiency of neat biofuel is 32.4% at 80% load which is very high compared to neat diesel (29.98%). The combustion duration and ignition delay are decreased with neat biofuel due to high oxygen content and high cetane number of biofuel. The main problem with the use of neat biofuel in diesel engine is high NOx emissions at all loads. Addition of diesel with biofuel reduces the NOx emissions significantly from 917 ppm to 889 ppm at 80% load with an optimum blend of B80D20. There is a slight decrease in brake thermal efficiency and increase in particulate emission with this blend. The overall results show that by adding small quantity of diesel with biofuel decreases the NOx emissions significantly and approaches the performance of neat biofuel

    Valorisation des déchets graisseux de poisson en biocombustible pour moteur diesel

    No full text
    L'augmentation de la population mondiale a entraĂźnĂ© un dĂ©veloppement accru des industries agro-alimentaires. Celles-ci gĂ©nĂšrent des quantitĂ©s enormes de dĂ©chets organiques qui sont composĂ©s principalement par des triglycĂ©rides. Ces dĂ©chets peuvent ĂȘtre convertis en tant que biocarburant par diverses procĂ©dĂ©s y compris les biochimiques et thermochimiques. Dans le prĂ©sent travail, les dĂ©chets graisseux de poissons sont considĂ©rĂ©s comme une source d'Ă©nergie pour les moteurs diesel. Pour cela, nous avons utilisĂ© le craquage catalytique comme procĂ©dĂ© thermochimique de valorisation de ces dĂ©chets en biocarburant. Nous avons effectuĂ© une Ă©tude prĂ©liminaire afin d'optimiser les paramĂštres expĂ©rimentaux (catalyseur, vitesse de chauffe, etc ) qui nous offrent le meilleur rendement en biocarburant. Cette optimisation vise aussi Ă  rĂ©duire le pouvoir corrosif du biocarburant en rĂ©duisant sa teneur Ă©lĂ©vĂ©e en acides carboxyliques. Les propriĂ©tĂ©s physico-chimiques du biocarburant produit sont conformes aux normes europĂ©ennes et amĂ©ricaines relatives au diesel. Une campagne d'expĂ©riences a Ă©tĂ© effectuĂ©e sur un moteur diesel stationnaire monocylindre pour l'Ă©tude des performances, des Ă©missions et de la combustion du biocarburant. Les rĂ©sultats obtenus ont montrĂ© que, malgrĂ© les Ă©missions Ă©levĂ©es en NOx et en CO2 , les Ă©missions en CO, hydrocarbures imbrulĂ©s, et particules enregistrĂ©es sont faibles et le rendement thermique est plus important. Les Ă©missions en NOx et CO2, peuvent ĂȘtre rĂ©duites en diluant le biocarburant avec le diesel ordinaire. Le biocarburant obtenu par craquage catalytique des dĂ©chets graisseux de poisson, peut ĂȘtre considĂ©rĂ© comme un carburant alternatif pour les moteurs diesel.As the continuously increasing world's population, has resulted in a huge demand for processed foods which result in a large amount waste from food industries. Although one of the most heavily polluting, the food industry does contribute to the increase in volume of waste fat. The waste fat from food industries is composed of triglycerides and fatty acids. This organic waste can be converted as biofuel by various methods such as biochemical and thermo-chemical process. In the present work, waste fish fat is considered as an energy source for diesel engines. In this regard, catalytic cracking (thermo-chemical) process is considered in the present study. Initially, tests were conducted to optimize the experimental parameters to get high biofuel yield and also to reduce the corrosiveness of the biofuel by reducing its high content of carboxylic acids. The physical and chemical properties of derived biofuel are compared with the European Norms (EN) and American Society for Testing and Materials for diesel (ASTMD) and it is on par with these standards. Finally, experiments were conducted in a stationary ingle cylinder diesel engine to study the performance, emission and combustion characteristics of biofuel. The results show that despite of high NOx and CO2 the engine has lesser UHC, CO and PM and better brake thermal efficiency than standard diesel fuel. The higher emissions of NOx and CO2 can be reduced by blending biofuel with diesel fuel. It is concluded that the biofuel derived from waste fish fat by catalytic cracking process can be considered as an alternative fuel for diesel engines.NANTES-BU Sciences (441092104) / SudocNANTES-ENS Mines (441092314) / SudocSudocFranceF
    corecore