17 research outputs found

    Increasing African genomic data generation and sharing to resolve rare and undiagnosed diseases in Africa: A call‑to‑action by the H3Africa rare diseases working group

    Get PDF
    The rich and diverse genomics of African populations is significantly underrepresented in reference and in diseaseassociated databases. This renders interpreting the Next Generation Sequencing (NGS) data and reaching a diagnostic more difficult in Africa and for the African diaspora. It increases chances for false positives with variants being misclassified as pathogenic due to their novelty or rarity. We can increase African genomic data by (1) making consent for sharing aggregate frequency data an essential component of research toolkit; (2) encouraging investigators with African data to share available data through public resources such as gnomAD, AVGD, ClinVar, DECIPHER and to use MatchMaker Exchange; (3) educating African research participants on the meaning and value of sharing aggregate frequency data; and (4) increasing funding to scale-up the production of African genomic data that will be more representative of the geographical and ethno-linguistic variation on the continent. The RDWG of H3Africa is hereby calling to action because this underrepresentation accentuates the health disparities. Applying the NGS to shorten the diagnostic odyssey or to guide therapeutic options for rare diseases will fully work for Africans only when public repositories include sufficient data from African subjects

    Genetic variation in angiotensin II type 2 receptor gene influences extent of left ventricular hypertrophy in hypertrophic cardiomyopathy independent of blood pressure

    Get PDF
    Introduction. Hypertrophic cardiomyopathy (HCM), an inherited primary cardiac disorder mostly caused by defective sarcomeric proteins, serves as a model to investigate left ventricular hypertrophy (LVH). HCM manifests extreme variability in the degree and distribution of LVH, even in patients with the same causal mutation. Genes coding for renin—angiotensin—aldosterone system components have been studied as hypertrophy modifiers in HCM, with emphasis on the angiotensin (Ang) II type 1 receptor (AT1R). However, Ang II binding to Ang II type 2 receptors (AT2R) also has hypertrophy-modulating effects. Methods. We investigated the effect of the functional +1675 G/A polymorphism (rs1403543) and additional single nucleotide polymorphisms in the 3' untranslated region of the AT2R gene ( AGTR2) on a heritable composite hypertrophy score in an HCM family cohort in which HCM founder mutations segregate. Results. We find significant association between rs1403543 and hypertrophy, with each A allele decreasing the average wall thickness by ~0.5 mm, independent of the effects of the primary HCM causal mutation, blood pressure and other hypertrophy covariates ( p = 0.020). Conclusion. This study therefore confirms a hypertrophy-modulating effect for AT2R also in HCM and implies that +1675 G/A could potentially be used in a panel of markers that profile a genetic predisposition to LVH in HCM

    Mutation profiling in South African patients with Cornelia de Lange syndrome phenotype

    Get PDF
    DATA AVAILABILITY STATEMENT : The variants described here were submitted to ClinVar and can be viewed under Organization ID 508172 or the ClinVar IDs recorded in Table 1. Data available on reasonable request from the corresponding author.BACKGROUND : Cornelia de Lange Syndrome (CdLS) presents with a variable multi-systemic phenotype and pathogenic variants have been identified in five main genes. This condition has been understudied in African populations with little phenotypic and molecular information available. METHODS AND RESULTS : We present a cohort of 14 patients with clinical features suggestive of CdLS. Clinical phenotyping was carried out and cases were classified according to the international consensus criteria. According to this criteria, nine patients had classical CdLS, one had non-classical CdLS and four presented with a phenotype that suggested molecular testing for CdLS. Each patient underwent mutation profiling using a targeted next generation sequencing panel of 18 genes comprising known and suspected CdLS causal genes. Of the 14 patients tested, pathogenic and likely pathogenic variants were identified in nine: eight variants in the NIPBL gene and one in the STAG1 gene. CONCLUSIONS : We present the first molecular data for a cohort of South African patients with CdLS. Eight of the nine variants identified were in the NIPBL gene, the most commonly involved gene in cases of CdLS. This is also the first report of a patient of African ancestry presenting with STAG1-related CdLS.The National Research Foundation and the South African Medical Research Council.http://www.wileyonlinelibrary.com/journal/mgg3hj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-03:Good heatlh and well-bein

    A feasible molecular diagnostic strategy for rare genetic disorders within resource-constrained environments

    Get PDF
    DATA AVAILABILITY : The datasets used or analyzed during the current study are available on reasonable request. Variant information was submitted to ClinVar and can be viewed under Organization ID 508172.Timely and accurate diagnosis of rare genetic disorders is critical, as it enables improved patient management and prognosis. In a resource-constrained environment such as the South African State healthcare system, the challenge is to design appropriate and cost-effective assays that will enable accurate genetic diagnostic services in patients of African ancestry across a broad disease spectrum. Next-generation sequencing (NGS) has transformed testing approaches for many Mendelian disorders, but this technology is still relatively new in our setting and requires cost-effective ways to implement. As a proof of concept, we describe a feasible diagnostic strategy for genetic disorders frequently seen in our genetics clinics (RASopathies, Cornelia de Lange syndrome, Treacher Collins syndrome, and CHARGE syndrome). The custom-designed targeted NGS gene panel enabled concurrent variant screening for these disorders. Samples were batched during sequencing and analyzed selectively based on the clinical phenotype. The strategy employed in the current study was cost-effective, with sequencing and analysis done at USD849.68 per sample and achieving an overall detection rate of 54.5%. The strategy employed is cost-effective as it allows batching of samples from patients with different diseases in a single run, an approach that can be utilized with rare and less frequently ordered molecular diagnostic tests. The subsequent selective analysis pipeline allowed for timeous reporting back of patients results. This is feasible with a reasonable yield and can be employed for the molecular diagnosis of a wide range of rare monogenic disorders in a resource-constrained environment.In part by the National Research Foundation (NRF) of South Africa, the University of the Witwatersrand FRC individual grant, the National Health Laboratory Service Research Trust and South African Medical Research Council (SAMRC) with funds received from the Self-Initiated Research Grant (SIR). Open access funding provided by University of the Witwatersrand.http://link.springer.com/journal/12687hj2024BiochemistryGeneticsMicrobiology and Plant PathologyNon

    Increasing African genomic data generation and sharing to resolve rare and undiagnosed diseases in Africa: a call-to-action by the H3Africa rare diseases working group

    Get PDF
    The rich and diverse genomics of African populations is significantly underrepresented in reference and in disease-associated databases. This renders interpreting the Next Generation Sequencing (NGS) data and reaching a diagnostic more difficult in Africa and for the African diaspora. It increases chances for false positives with variants being misclassified as pathogenic due to their novelty or rarity. We can increase African genomic data by (1) making consent for sharing aggregate frequency data an essential component of research toolkit; (2) encouraging investigators with African data to share available data through public resources such as gnomAD, AVGD, ClinVar, DECIPHER and to use MatchMaker Exchange; (3) educating African research participants on the meaning and value of sharing aggregate frequency data; and (4) increasing funding to scale-up the production of African genomic data that will be more representative of the geographical and ethno-linguistic variation on the continent. The RDWG of H3Africa is hereby calling to action because this underrepresentation accentuates the health disparities. Applying the NGS to shorten the diagnostic odyssey or to guide therapeutic options for rare diseases will fully work for Africans only when public repositories include sufficient data from African subjects

    Novel mutation in the CHST6 gene causes macular corneal dystrophy in a black South African family

    Get PDF
    BACKGROUND: Macular corneal dystrophy (MCD) is a rare autosomal recessive disorder that is characterized by progressive corneal opacity that starts in early childhood and ultimately progresses to blindness in early adulthood. The aim of this study was to identify the cause of MCD in a black South African family with two affected sisters. METHODS: A multigenerational South African Sotho-speaking family with type I MCD was studied using whole exome sequencing. Variant filtering to identify the MCD-causal mutation included the disease inheritance pattern, variant minor allele frequency and potential functional impact. RESULTS: Ophthalmologic evaluation of the cases revealed a typical MCD phenotype and none of the other family members were affected. An average of 127 713 variants per individual was identified following exome sequencing and approximately 1.2 % were not present in any of the investigated public databases. Variant filtering identified a homozygous E71Q mutation in CHST6, a known MCD-causing gene encoding corneal N-acetyl glucosamine-6-O-sulfotransferase. This E71Q mutation results in a non-conservative amino acid change in a highly conserved functional domain of the human CHST6 that is essential for enzyme activity. CONCLUSION: We identified a novel E71Q mutation in CHST6 as the MCD-causal mutation in a black South African family with type I MCD. This is the first description of MCD in a black Sub-Saharan African family and therefore contributes valuable insights into the genetic aetiology of this disease, while improving genetic counselling for this and potentially other MCD families. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12881-016-0308-0) contains supplementary material, which is available to authorized users

    Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study

    Get PDF
    Purpose: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. Methods: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. Results: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. Conclusions: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19

    Renin-angiotensin-aldosterone system genes and the complex hypertrophic phenotype of hypertrophic cardiomyopathy

    Get PDF
    Thesis (PhD)--Stellenbosch University, 2012.ENGLISH ABSTRACT: Left ventricular hypertrophy (LVH) is a strong independent predictor of cardiovascular morbidity and mortality, while its regression is associated with an improved clinical prognosis. It is, therefore, vital to elucidate and fully comprehend the mechanisms that contribute to LVH development and to identify markers that indicate a strong predisposition to the development of severe cardiac hypertrophy, before its occurrence. Hypertrophic cardiomyopathy (HCM) serves as a model to investigate LVH development. This primary cardiac disease is characterised by LVH in the absence of increased external loading conditions and is caused by defective sarcomeric proteins, as a result of mutations within the genes encoding these proteins. However, the hypertrophic phenotype of HCM is largely complex, as we see strong variability in the extent and distribution of LVH in HCM, even in individuals with the same disease-causing mutation from the same family; this points toward the involvement of additional genetic and environmental modifiers. Components of the renin-angiotensin-aldosterone system (RAAS) influence LVH indirectly, through their key role in blood pressure regulation, but also directly, due to the direct cellular hypertrophic effects of some RAAS components. Previous genetic association studies aimed at investigating the contribution of RAAS variants to LVH were largely centred on a subset of polymorphisms within the genes encoding the angiotensin converting enzyme (ACE) and angiotensin II type 1 receptor genes, while the renin section and RAAS components downstream from ACE remained largely neglected. In addition, most previous studies have reported relatively small individual effects for a small subset of RAAS variants on LVH. In the present study we, therefore, employ a family-based genetic association analysis approach to investigate the contribution of the entire RAAS to this complex hypertrophic phenotype by exploring both the individual as well as the compound effects of 84 variants within 22 RAAS genes, in a cohort of 388 individuals from 27 HCM families, in which either of three HCM-founder mutations segregate. During the course of this explorative study, we identified a number of RAAS variants that had significant effects on hypertrophy in HCM, whether alone or within the context of a multi-variant haplotype. Through single variant association analyses, we identified variants within the genes encoding angiotensinogen, renin-binding protein, the mannose-6-phosphate receptor, ACE, ACE2, angiotensin receptors 1 and 2, the mineralocorticoid receptor, as well as the epithelial sodium channel and the Na+/K+-ATPase β-subunits, that contribute to hypertrophy in HCM. Using haplotype-based association analyses, we were able to identify haplotypes within the genes encoding for renin, the mannose-6-phosphate receptor, angiotensin receptor 1, the mineralocorticoid receptor, epithelial sodium channel and Na+/K+-ATPase α- and β subunits, as well as the CYP11B1/B2 locus, that contribute significantly to LVH. In addition, we found that some RAAS variants and haplotypes had statistically significantly different effects in the three HCM founder mutation groups. Finally, we used stepwise selection to identify a set of nine risk-alleles that together predicted a 127.80 g increase in left ventricular mass, as well as a 13.97 mm increase in maximum interventricular septal thickness and a 14.67 mm increase in maximum left ventricular wall thickness in the present cohort. In contrast, we show that a set of previously identified “pro-LVH” polymorphisms rather poorly predicted LVH in the present South African cohort. This is the first RAAS investigation, to our knowledge, to provide clear quantitative effects for a subset of RAAS variants indicative of a risk for LVH development that are representative of the entire pathway. Our findings suggest that the eventual hypertrophic phenotype of HCM is modulated by the compound effect of a number of RAAS modifier loci, where each polymorphism makes a modest contribution towards the eventual phenotype. Research such as that presented here provides a basis on which future studies can build improved risk profiles for LVH development within the context of HCM, and ultimately in all patients with a risk of cardiac hypertrophy.AFRIKAANSE OPSOMMING: Linker ventrikulêre hipertrofie (LVH) is 'n sterk onafhanklike voorspeller van kardiovaskulêre morbiditeit en mortaliteit, terwyl LVH regressie verband hou met ‘n verbeterde kliniese voorspelling. Dit is dus noodsaaklik om die meganismes wat bydra to LVH ontwikkeling ten volle te verstaan en merkers wat 'n sterk geneigdheid tot die ontwikkeling van ernstige kardiale hipertrofie te identifiseer, voordat dit voorkom. Hipertrofiese kardiomiopatie (HKM) dien as 'n model om LVH ontwikkeling te ondersoek. Hierdie primêre hartsiekte word gekenmerk deur LVH en word meestal veroorsaak deur foutiewe sarkomeer proteïene as gevolg van mutasies binne die gene wat kodeer vir hierdie proteïene. Die hipertrofiese fenotipe van HKM is egter grootliks kompleks; ons sien, by voorbeeld, sterk veranderlikheid in die omvang en die verspreiding van LVH in HKM, selfs in individue met dieselfde siekte-veroorsakende mutasie binne dieselfde gesin, wat dui op die betrokkenheid van addisionele genetiese en omgewing modifiseerders. Komponente van die renien-angiotensien-aldosteroon sisteem (RAAS) beïnvloed LVH indirek, deur middel van hul belangrike rol in bloeddruk regulasie, maar ook direk, as gevolg van die direkte sellulêre hipertrofiese gevolge van sommige RAAS komponente. Vorige genetiese assosiasie studies wat daarop gemik was om die bydrae van RAAS variante LVH te ondersoek, was hoofsaaklik gesentreer op 'n groepie polimorfismes binne die gene wat kodeer vir die “angiotensin converting enzyme” (ACE) en angiotensien II tipe 1-reseptor gene, terwyl die renien gedeelte en RAAS komponente stroomaf van ACE meestal nie ondersoek was nie. Daarbenewens het die meeste vorige studies relatief klein individuele gevolge gerapporteer vir 'n klein groepie RAAS variante op LVH. In die huidige studie het ons dus 'n familie-gebaseerde genetiese assosiasie-analise benadering gebruik om die bydrae van die hele RAAS tot hierdie komplekse hipertrofiese fenotipe te ondersoek deur 'n studie van die individuele-, sowel as die saamgestelde effekte van 84 variante binne 22 RAAS gene, in 'n groep van 388 individue vanaf 27 HKM families, waarin een van drie HCM-stigter mutasies seggregeer. Gedurende die loop van hierdie studie het ons 'n aantal RAAS variante wat ‘n beduidende uitwerking op HKM hipertrofie geïdentifiseer, hetsy alleen of binne die konteks van' n multi-variant haplotipe. Deur middel van enkele variant assosiasie toetsing het ons variante geïdentifiseer binne die gene wat kodeer vir angiotensinogen, renien-bindende proteïen, die mannose-6-fosfaat reseptor, ACE, ACE2, angiotensien reseptore 1 en 2, die mineralokortikoïd reseptor, sowel as die epiteel natrium kanaal en Na+/ K+-ATPase β-subeenhede, wat bydra tot HKM hipertrofie. Deur die gebruik van haplotipe-gebaseerde assosiasie ontleding was ons in staat om haplotipes te identifiseer binne die gene wat kodeer vir renien, die mannose-6-fosfaat reseptor angiotensien reseptor 1, die mineralokortikoïd reseptor, epiteel natrium kanaal en die Na+/ K+-ATPase α-en β subeenhede, sowel as die CYP11B1/B2 lokus, wat aansienlik bydra tot LVH. Verder het ons bevind dat sommige RAAS variante en haplotipes statisties beduidende verskillende effekte gehad het in die drie HKM stigter mutasie groepe. Laastens, het ons stapsgewyse seleksie gebruik om 'n stel van nege risiko-allele wat saam' n toename van 127.80 g in linker ventrikulêre massa, sowel as 'n 13.97 mm toename in maksimum ventrikulêre septale dikte, en' n 14.67 mm verhoging in maksimum linker ventrikulêre wanddikte voorspel, te identifiseer in die huidige kohort. In teenstelling hiermee wys ons dat 'n stel van voorheen geïdentifiseerde "pro-LVH" polimorfismes swakker gevaar het as LVH-voorspellers in die huidige Suid-Afrikaanse kohort. Hierdie is die eerste RAAS ondersoek, tot ons kennis, wat ‘n duidelike kwantitatiewe gevolge vir 'n stel RAAS variante wat ‘n verhoogde risiko tot LVH ontwikkeling aandui, wat verteenwoordigend is van die hele RAAS. Ons bevindinge dui daarop dat die uiteindelike hipertrofiese fenotipe van HKM gemoduleer word deur die saamgestelde effek van 'n aantal RAAS wysiger loki, waar elke polimorfisme ' n beskeie bydrae maak tot die uiteindelike fenotipe. Navorsing soos dié wat hier aangebied word dien as 'n basis waarop toekomstige studies kan bou vir ‘n verbeterde risiko-profiel vir LVH ontwikkeling binne die konteks van die HKM, en uiteindelik in alle pasiënte met' n verhoogde risiko vir kardiale hipertrofie

    Genetic variation in angiotensin II type 2 receptor gene influences extent of left ventricular hypertrophy in hypertrophic cardiomyopathy independent of blood pressure

    No full text
    Introduction. Hypertrophic cardiomyopathy (HCM), an inherited primary cardiac disorder mostly caused by defective sarcomeric proteins, serves as a model to investigate left ventricular hypertrophy (LVH). HCM manifests extreme variability in the degree and distribution of LVH, even in patients with the same causal mutation. Genes coding for renin—angiotensin—aldosterone system components have been studied as hypertrophy modifiers in HCM, with emphasis on the angiotensin (Ang) II type 1 receptor (AT1R). However, Ang II binding to Ang II type 2 receptors (AT2R) also has hypertrophy-modulating effects. Methods. We investigated the effect of the functional +1675 G/A polymorphism (rs1403543) and additional single nucleotide polymorphisms in the 3' untranslated region of the AT2R gene ( AGTR2) on a heritable composite hypertrophy score in an HCM family cohort in which HCM founder mutations segregate. Results. We find significant association between rs1403543 and hypertrophy, with each A allele decreasing the average wall thickness by ~0.5 mm, independent of the effects of the primary HCM causal mutation, blood pressure and other hypertrophy covariates ( p = 0.020). Conclusion. This study therefore confirms a hypertrophy-modulating effect for AT2R also in HCM and implies that +1675 G/A could potentially be used in a panel of markers that profile a genetic predisposition to LVH in HCM

    The Arabidopsis Hop1 homolog ASY1 mediates cross-over assurance and interference

    No full text
    The chromosome axis plays a crucial role in meiotic recombination. Here, we study the function of ASY1, the Arabidopsis homolog of the yeast chromosome axis-associated component Hop1. Specifically, we characterized cross-over (CO) distribution in female and male meiosis by deep sequencing of the progeny of an allelic series of asy1 mutants. Combining data from nearly 1,000 individual plants, we find that reduced ASY1 functionality leads to genomic instability and sometimes drastic genomic rearrangements. We further observed that COs are less frequent and appear in more distal chromosomal regions in plants with no or reduced ASY1 functionality, consistent with previous analyses. However, our sequencing approach revealed that the reduction in CO number is not as dramatic as suggested by cytological analyses. Analysis of double mutants of asy1 with mutants with three other CO factors, MUS81, MSH4, and MSH5, as well as the determination of foci number of the CO regulator MLH1 demonstrates that the majority of the COs in asy1, similar to the situation in the wildtype (WT), largely belong to the class I, which are subject to interference. However, these COs are redistributed in asy1 mutants and typically appear much closer than in the WT. Hence, ASY1 plays a key role in CO interference that spaces COs along a chromosome. Conversely, since a large proportion of chromosomes do not receive any CO, we conclude that CO assurance, the process that ensures the obligatory assignment of one CO per chromosome, is also affected in asy1 mutants
    corecore