20 research outputs found
Parsimony-based genetic algorithm for haplotype resolution and block partitioning
This dissertation proposes a new algorithm for performing simultaneous haplotype resolution and block partitioning. The algorithm is based on genetic algorithm approach and the parsimonious principle. The multiloculs LD measure (Normalized Entropy Difference) is used as a block identification criterion. The proposed algorithm incorporates missing data is a part of the model and allows blocks of arbitrary length. In addition, the algorithm provides scores for the block boundaries which represent measures of strength of the boundaries at specific positions. The performance of the proposed algorithm was validated by running it on several publicly available data sets including the HapMap data and comparing results to those of the existing state-of-the-art algorithms. The results show that the proposed genetic algorithm provides the accuracy of haplotype decomposition within the range of the same indicators shown by the other algorithms. The block structure output by our algorithm in general agrees with the block structure for the same data provided by the other algorithms. Thus, the proposed algorithm can be successfully used for block partitioning and haplotype phasing while providing some new valuable features like scores for block boundaries and fully incorporated treatment of missing data. In addition, the proposed algorithm for haplotyping and block partitioning is used in development of the new clustering algorithm for two-population mixed genotype samples. The proposed clustering algorithm extracts from the given genotype sample two clusters with substantially different block structures and finds haplotype resolution and block partitioning for each cluster
Development of a mathematical model for analyzing the perturbed state of a thermal power hydraulic system
The results of developing a model for analyzing the perturbed state of a thermal power hydraulic system are presented using the example of a heat supply system. The parameters of the operating mode of the thermal power hydraulic system were assessed after exposure to disturbing factors. It is noted that the choice of boundary conditions must be carried out taking into account the use of energy equivalence when analyzing the perturbed state of the investigated fragment of the hydraulic system. The developed model of steady flow distribution with non-isothermal flow of a viscous medium is presented. It is concluded that the developed mathematical model represents a qualitatively new approach to formalizing problems of flow distribution analysis in systems with adjustable parameters. The model can be considered as a generalized form of representing particular models of flow distribution when describing the object under study, which can be considered as a hydraulic circuit with adjustable parameters for nonisothermal flow of a viscous medium. It is shown that this model can be used to analyze and describe the flows and properties of a viscous medium in systems where it is possible to regulate parameters and non-isothermal flow is taken into account
Prediction of Bodyweight and Energy Expenditure Using Point Pressure and Foot Acceleration Measurements
Bodyweight (BW) is an essential outcome measure for weight management and is also a major predictor in the estimation of daily energy expenditure (EE). Many individuals, particularly those who are overweight, tend to underreport their BW, posing a challenge for monitors that track physical activity and estimate EE. The ability to automatically estimate BW can potentially increase the practicality and accuracy of these monitoring systems. This paper investigates the feasibility of automatically estimating BW and using this BW to estimate energy expenditure with a footwear-based, multisensor activity monitor. The SmartShoe device uses small pressure sensors embedded in key weight support locations of the insole and a heel-mounted 3D accelerometer. Bodyweight estimates for 9 subjects are computed from pressure sensor measurements when an automatic classification algorithm recognizes a standing posture. We compared the accuracy of EE prediction using estimated BW compared to that of using the measured BW. The results show that point pressure measurement is capable of providing rough estimates of body weight (root-mean squared error of 10.52 kg) which in turn provide a sufficient replacement of manually-entered bodyweight for the purpose of EE prediction (root-mean squared error of 0.7456 METs vs. 0.6972 METs). Advances in the pressure sensor technology should enable better accuracy of body weight estimation and further improvement in accuracy of EE prediction using automatic BW estimates
Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial
Background:
Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke.
Methods:
We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515.
Findings:
Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group.
Interpretation:
In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes.
Funding:
GlaxoSmithKline
Activity-based sleep-wake identification in infants
Actigraphy offers one of the best-known alternatives to polysomnography for sleep-wake identification. The advantages of actigraphy include high accuracy, simplicity of use and low intrusiveness. These features allow the use of actigraphy for determining sleep-wake states in such highly sensitive groups as infants. This study utilizes a motion sensor (accelerometer) for a dual purpose: to determine an infant\u27s position in the crib and to identify sleep-wake states. The accelerometer was positioned over the sacral region on the infant\u27s diaper, unlike commonly used attachment to an ankle. Opposed to broadly used discriminant analysis, this study utilized logistic regression and neural networks as predictors. The accuracy of predicted sleep-wake states was established in comparison to the sleep-wake states recorded by technicians in a polysomnograph study. Both statistical and neural predictors of this study provide an accuracy of approximately 77-92% which is comparable to similar studies achieving prediction rates of 85-95%, thus validating the suggested methodology. The results support the use of body motion as a simple and reliable method for determining sleep-wake states in infants. Nonlinear mapping capabilities of the neural network benefit the accuracy of sleep-wake state identification. Utilization of the accelerometer for the dual purpose allows us to minimize intrusiveness of home infant monitors
Monitoring of the technical condition of structures and building materials of an elevator silo housing
The results of assessing the technical condition of the elevator silo housing, obtained on the basis of a visual instrumental examination using the non-destructive testing method, are considered. Existing defects and damages in the building materials and structures of the building, which adversely affect its performance, were identified. An assessment was made of the state of foundations, walls, floors of the silo and columns installed at the corners of the silo at the height of the silo. The results of the assessment of individual results of the performed instrumental studies of structures and building materials at the object under study are presented. The technical condition of the building as a whole is assessed as a limited operational technical condition. The phase of the period of operation of the building was determined. Recommendations have been developed to ensure the safe operation of the building under study. It has been established that it is necessary to strengthen the structural elements of the building for further safety during the operation of the elevator. It is proposed to introduce the necessary measures to improve the reliability and strength properties of individual structural elements after a period of their long-term operation