425 research outputs found

    Mechanism of the effects of sodium channel blockade on the arrhythmogenic substrate of Brugada syndrome.

    Get PDF
    BACKGROUND: The mechanisms by which sodium channel blockade and high-rate pacing modify electrogram (EGM) substrates of Brugada syndrome (BrS) have not been elucidated. OBJECTIVE: The purpose of this study was to determine the effect of ajmaline and high pacing rate on the BrS substrates. METHODS: Thirty-two patients with BrS (mean age 40 ± 12 years) and frequent ventricular fibrillation episodes underwent right ventricular outflow tract substrate electroanatomical and electrocardiographic imaging (ECGI) mapping before and after ajmaline administration and during high-rate atrial pacing. In 4 patients, epicardial mapping was performed using open thoracotomy with targeted biopsies. RESULTS: Ajmaline increased the activation time delay in the substrate (33%; P = .002), ST-segment elevation in the right precordial leads (74%; P < .0001), and the area of delayed activation (170%; P < .0001), coinciding with the increased substrate size (75%; P < .0001). High atrial pacing rate increased the abnormal EGM duration at the right ventricular outflow tract areas from 112 ± 48 to 143 ± 66 ms (P = .003) and produced intermittent conduction block and/or excitation failure at the substrate sites, especially after ajmaline administration. Biopsies from the 4 patients with thoracotomy showed epicardial fibrosis where EGMs were normal at baseline but became fractionated after ajmaline administration. In some areas, local activation was absent and unipolar EGMs had a monophasic morphology resembling the shape of the action potential. CONCLUSION: Sodium current reduction with ajmaline severely compromises impulse conduction at the BrS fibrotic substrates by producing fractionated EGMs, conduction block, or excitation failure, leading to the Brugada ECG pattern and favoring ventricular fibrillation genesis

    Equivalence of 2 effective graft-versus-host disease prophylaxis regimens: Results of a prospective double-blind randomized trial

    Get PDF
    AbstractWe have previously demonstrated a decrease in the incidence of acute graft-versus-host disease (GVHD) with the addition of methotrexate (MTX) to cyclosporine (CSP) and prednisone (PSE) chemotherapy in patients with leukemia. We have now completed a prospective randomized trial comparing the 3-drug regimen (CSP/MTX/PSE, including 3 doses of MTX) to the standard 2-drug regimen (CSP/MTX, including 4 doses of MTX) to investigate the benefit of PSE used up front for the prevention of acute and chronic GVHD. In the trial, 193 patients were randomized and 186 were included in the final analysis. All patients received a bone marrow graft from a fully histocompatible sibling donor. The preparatory regimen consisted of fractionated total-body irradiation (fTBI) and etoposide in all but 13 patients, who received fTBI and cyclophosphamide. The patients were randomized to receive either CSP/MTX/PSE or CSP/MTX. The 2 groups were well balanced with respect to diagnosis, disease stage, age, donor-recipient sex, and parity. In an intent-to-treat analysis, the incidence of acute GVHD was 18% (95% confidence interval [CI] 12-28) for the CSP/MTX/PSE group compared with 20% (CI 10-26) for the CSP/,MTX group (P = .60), with a median follow up of 2.2 years. Overall survival was 65% for those receiving CSP/MTX/PSE and 72% for those receiving CSP/MTX (P = .10); the relapse rate was 15% for the CSP/MTX/PSE group and 12% for the CSP/MTX group (P = .83). The incidence of chronic GVHD was similar (46% versus 52%; P = .38), with a follow-up of 0.7 to 6.0 years. Of interest, 21 patients went off study due to GVHD (5 in the CSP/MTX/PSE group and 16 in the CSP/MITX group [P = .02]), and 11 patients went off study because of alveolar hemorrhage (3 in the CSP/MTX/PSE group and 8 in the CSP/MTX group [P = .22]). The addition of PSE did not result in a higher incidence of infectious complications, bacterial (66% versus 58%), viral (77% versus 66%), or fungal (20% versus 20%), in those receiving CSP/MTX/PSE versus CSP/MTX, respectively. These data suggest that the addition of PSE was associated with a somewhat lower incidence of early posttransplantation complications but did not have a positive impact on the incidence of acute or chronic GVHD or event-free or overall survival.Biol Blood Marrow Transplant 2000;6(3):254-61

    Fibrosis, Connexin-43, and Conduction Abnormalities in the Brugada Syndrome.

    Get PDF
    BACKGROUND: The right ventricular outflow tract (RVOT) is acknowledged to be responsible for arrhythmogenesis in Brugada syndrome (BrS), but the pathophysiology remains controversial. OBJECTIVES: This study assessed the substrate underlying BrS at post-mortem and in vivo, and the role for open thoracotomy ablation. METHODS: Six whole hearts from male post-mortem cases of unexplained sudden death (mean age 23.2 years) with negative specialist cardiac autopsy and familial BrS were used and matched to 6 homograft control hearts by sex and age (within 3 years) by random risk set sampling. Cardiac autopsy sections from cases and control hearts were stained with picrosirius red for collagen. The RVOT was evaluated in detail, including immunofluorescent stain for connexin-43 (Cx43). Collagen and Cx43 were quantified digitally and compared. An in vivo study was undertaken on 6 consecutive BrS patients (mean age 39.8 years, all men) during epicardial RVOT ablation for arrhythmia via thoracotomy. Abnormal late and fractionated potentials indicative of slowed conduction were identified, and biopsies were taken before ablation. RESULTS: Collagen was increased in BrS autopsy cases compared with control hearts (odds ratio [OR]: 1.42; p = 0.026). Fibrosis was greatest in the RVOT (OR: 1.98; p = 0.003) and the epicardium (OR: 2.00; p = 0.001). The Cx43 signal was reduced in BrS RVOT (OR: 0.59; p = 0.001). Autopsy and in vivo RVOT samples identified epicardial and interstitial fibrosis. This was collocated with abnormal potentials in vivo that, when ablated, abolished the type 1 Brugada electrocardiogram without ventricular arrhythmia over 24.6 ± 9.7 months. CONCLUSIONS: BrS is associated with epicardial surface and interstitial fibrosis and reduced gap junction expression in the RVOT. This collocates to abnormal potentials, and their ablation abolishes the BrS phenotype and life-threatening arrhythmias. BrS is also associated with increased collagen throughout the heart. Abnormal myocardial structure and conduction are therefore responsible for BrS

    HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: Recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation

    Get PDF
    During the past decade, catheter ablation of atrial fibrillation (AF) has evolved rapidly from a highly experimental unproven procedure, to its current status as a commonly performed ablation procedure in many major hospitals throughout the world. Surgical ablation of AF, using either standard or minimally invasive techniques, is also performed in many major hospitals throughout the world. The purpose of this Consensus Statement is to provide a state-of-the-art review of the field of catheter and surgical ablation of AF, and to report the findings of a Task Force, convened by the Heart Rhythm Society and charged with defining the indications, techniques, and outcomes of this procedure. The Heart Rhythm Society was pleased to develop this Consensus Statement in partnership with the European Heart Rhythm Association and the European Cardiac Arrhythmia Society. This statement summarizes the opinion of the Task Force members based on their own experience in treating patients, as well as a review of the literature, and is directed to all health care professionals who are involved in the care of patients with AF, particularly those who are undergoing or are being considered for catheter or surgical ablation procedures for AF. This statement is not intended to recommend or promote catheter ablation of AF. Rather the ultimate judgment regarding care of a particular patient must be made by the health care provider and patient in light of all the circumstances presented by that patient. In writing a "consensus" document, it is recognized that consensus does not mean that there was complete agreement among all Task Force members. We attempted to identify those aspects of AF ablation for which a true "consensus" could be identified ( Tables 1 and 2 ). Surveys of the entire Task Force were used to identify these areas of consensus. The main objective of this document is
    corecore