1,885 research outputs found

    SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks

    Full text link
    In this work, we propose a reliable, power efficient and high throughput routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop topology to achieve minimum energy consumption and longer network lifetime. We propose a cost function to select parent node or forwarder. Proposed cost function selects a parent node which has high residual energy and minimum distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes while distance parameter ensures successful packet delivery to sink. Simulation results show that our proposed protocol maximize the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    An Adaptive Software Fault Tolerant Framework for Ubiquitous Vehicular Technologies

    Get PDF
    Probability for the occurrence of faults increases manifolds when program Lines of Code (LoC) exceeds a few thousand in ubiquitous applications. Faults mitigation in ubiquitous applications, such as those of autonomous Vehicular Technologies (VTs), has not been effective even with the use of formal methods. Faults in such applications require exhaustive testing for a timely fix, that seems infeasible computationally. This emphasizes the imperative role of Software Fault Tolerance (SFT) for autonomous applications. Several SFT techniques have been proposed but failures revealed in VT applications imply that existing SFT techniques need to be fine-tuned. In this paper, current replication-based SFT techniques have been analyzed and classified with respect to their diversity, adjudication, and adaptivity. Essential parameters (such as Reliability, Time, Variance, etc) for adjudication, diversity, and adaptiveness were recorded. The identified parameters were mapped to different techniques (such as AFTRC, SCOP, VFT, etc) for observing their shortcomings. Consequently, a generic framework named ”Diverse Parallel Adjudication for Software Fault Tolerance (DPA-SFT)” has been proposed. DPA-SFT addresses the shortcomings of existing SFT techniques for VTs with the added value of parallel and diverse adjudication. A prototype implementation of the proposed framework has been developed for assessing the viability of DPA-SFT over modules of VT. An empirical comparison of the proposed framework was performed with prevalent techniques (AFTRC, SCOP, VFT, etc). A thorough evaluation suggests that DPA-SFT performs better than contemporary SFT techniques in VTs due to its parallel and diverse adjudication

    Biohydrolysis of Saccharum spontaneum for cellulase production by Aspergillus terreus

    Get PDF
    Saccharum spontaneum, a wasteland weed, is utilized for cellulase production by Aspergillus terreus in solid state fermentation. S. spontaneum served as good carbon source and solid support. Various process parameters including optimal nitrogen source, initial moisture level, incubation time, initial pH, incubation temperature and inoculum size were evaluated. The maximum cellulase production was attained at 70% of initial moisture with incubation of 96 h at 30±2°C, and pH 4.5. Ammonium sulphate in concentration of 0.2% (w/w) was the most preferable nitrogen source among all tested nitrogen sources. The results indicate that S. spontaneum could be utilized as a substrate in solid state fermentation (SSF) for economic production of cellulase.Key words: Cellulase, solid state fermentation, Saccharum spontaneum, Aspergillus terreus

    An electrode design rule for high performance top-illuminated organic photovoltaics

    Get PDF
    An electrode design rule for high performance top-illuminated bulk-heterojunction organic photovoltaics is proposed, that enables the device architecture to be simplified by removing the need for the electron selective layer at the interface with the low work function reflective electrode. This new guideline for electrode design is underpinned by device studies in conjunction with a study of the energetics at the interface between five widely used solution processed organic semiconductors of both electron donor and acceptor type, and a stable low work function reflective substrate electrode. The magnitude and distribution of space charge resulting from ground-state electron transfer from the electrode into each organic semiconductor upon contact formation is derived from direct measurements of the interfacial energetics using the Kelvin probe technique, which enables the variation in potential across the entire film thickness used in the devices to be probed

    Boundary layer flow of nanofluid over an exponentially stretching surface

    Get PDF
    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt

    Probabilistic Model for Free-Space Optical Links Under Continental Fog Conditions

    Get PDF
    The error characteristics of a free-space optical (FSO) channel are significantly different from the fiber based optical links and thus require a deep physical understanding of the propagation channel. In particular different fog conditions greatly influence the optical transmissions and thus a channel model is required to estimate the detrimental fog effects. In this paper we shall present the probabilistic model for radiation fog from the measured data over a 80 m FSO link installed at Graz, Austria. The fog events are classified into thick fog, moderate fog, light fog and general fog based on the international code of visibility range. We applied some probability distribution functions (PDFs) such as Kumaraswamy, Johnson SB and Logistic distribution, to the actual measured optical attenuations. The performance of each distribution is evaluated by Q-Q and P-P plots. It is found that Kumaraswamy distribution is the best fit for general fog, while Logistic distribution is the optimum choice for thick fog. On the other hand, Johnson SB distribution best fits the moderate and light fog related measured attenuation data. The difference in these probabilistic models and the resultant variation in the received signal strength under different fog types needs to be considered in designing an efficient FSO system

    Magnetic properties of polyvinyl alcohol and doxorubicine loaded iron oxide nanoparticles for anticancer drug delivery applications

    Get PDF
    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery

    Hybridizing Micro - B4C with Carbon nanotubes to Enhance the Mechanical Properties of Aluminium Matrix Composites

    Get PDF
    In present work, the effects of hybridizing micron sized B4C particles with multi walled carbon nanotubes on the microstructural and mechanical properties of Al - B4C composite were investigated. Microstructure reveals grain refinement ascribed to the presence of uniformly distributed micron sized B4C particles with multi walled carbon nanotubes. The Al - (B4C + MWCNT) hybrid composite indicates the alliance of mechanical properties such as hardness, tensile strength and ductility. The enhanced attribute of Al - (B4C + MWCNT) hybrid composite when compared to Al - B4C is the increased content and uniform distribution of MWCNTs. © Published under licence by IOP Publishing Ltd
    corecore