
An Adaptive Software Fault-Tolerant Framework
for Ubiquitous Vehicular Technologies

Muhammad Rizwan, Aamer Nadeem, Muddesar Iqbal, Sohail Sarwar, Muhammad Safyan
Zia Ul Qayyum

Abstract—Probability for the occurrence of faults increases
manifolds when program Lines of Code (LoC) exceeds a few
thousand in ubiquitous applications. Faults mitigation in ubiq-
uitous applications, such as those of autonomous Vehicular
Technologies (VTs), has not been effective even with the use of
formal methods. Faults in such applications require exhaustive
testing for a timely fix, that seems infeasible computationally.
This emphasizes the imperative role of Software Fault Tolerance
(SFT) for autonomous applications. Several SFT techniques have
been proposed but failures revealed in VT applications imply
that existing SFT techniques need to be fine-tuned. In this paper,
current replication-based SFT techniques have been analyzed and
classified with respect to their diversity, adjudication, and adap-
tivity. Essential parameters (such as Reliability, Time, Variance,
etc) for adjudication, diversity, and adaptiveness were recorded.
The identified parameters were mapped to different techniques
(such as AFTRC, SCOP, VFT, etc) for observing their shortcom-
ings. Consequently, a generic framework named ”Diverse Parallel
Adjudication for Software Fault Tolerance (DPA-SFT)” has
been proposed. DPA-SFT addresses the shortcomings of existing
SFT techniques for VTs with the added value of parallel and
diverse adjudication. A prototype implementation of the proposed
framework has been developed for assessing the viability of
DPA-SFT over modules of VT. An empirical comparison of the
proposed framework was performed with prevalent techniques
(AFTRC, SCOP, VFT, etc). A thorough evaluation suggests that
DPA-SFT performs better than contemporary SFT techniques in
VTs due to its parallel and diverse adjudication.

Index Terms—Software Fault Tolerance, Vehicular Technolo-
gies, Ubiquity, Adjudication, N-Version Programming, Safety-
Critical Systems

I. INTRODUCTION

The ubiquitous applications in human life demand a higher
degree of reliability due to their safety-critical nature such
as Autonomous Vehicles, Air Traffic Control, Auto-Pilots and
UAV Drones etc. In these applications, the desired level of
reliability ranges between 10−8 to 10−9 failures per hour [1].
However, this mark of reliability has not been achieved yet.
Consequently, countless accidents were encountered, incurring
the loss of human lives, environmental calamities and property
wreckages. These potential threats emphasize the imperative
need for mitigating application faults in safety-critical applica-
tions (especially Autonomous and Ubiquitous Technologies).
So that degree of reliability in stated systems can be enhanced
for preventing all the damages.

Nearly 1.2 million lives are lost every year due to traffic
accidents in urban vicinities [1]. This factor has been given
special consideration while developing Autonomous Vehicular
Applications (for ground, aerial and underwater vehicles) to
assure the aspects of safety, reliability and efficiency. These

techniques [2] include: correctness of vehicular coordination
problems by satisfiability module theories (SMT), automatic
formal verification tool on distributed coordinates, manual
proof strategies to avoid collision and 2-3 theorem for fault
safety [3]. The safety of VT has been improved through formal
verification over the decision control module of ”lane change”
using lateral state managers [4].

Generally, VTs may use four approaches to cope with appli-
cation faults, fault forecasting, fault prevention, fault removal,
and fault tolerance (i.e. SFT). The immediate functional impact
is usually achieved by fault prevention, removal, and tolerance.
When there are more than few KLoC, the probability for the
occurrence of faults increases despite employing the formal
methods for fault prevention [5]. Moreover, the idea of per-
forming exhaustive testing for fault removal is not practical
due to time/computation constraints. Therefore, opting SFT
is the best choice to prevent consequences of residual faults
in VTs for timely reconfiguration, maintenance or graceful
degradation. Here, lesser critical operations are terminated for
resource allocation to critical ones to assure availability.

SFT techniques have been exploited to circumvent asserted
failures in VTs with the presence of application faults. A
variety of approaches have been proposed to complement
the SFT process augmented with VTs [6]. These approaches
can be categorized broadly into adaptive and non-adaptive
techniques [7]. Contrary to non-adaptive ones, adaptive tech-
niques dynamically maneuver themselves for assuring Quality
of Service (QoS) in VTs (availability time, required reliability,
degree of fault tolerance, etc) and operating environment
(number of processes, storage, etc) [8]. Extreme diversity
in the available resources and modules of VT applications
may be catered only through adaptive techniques. So, the
proposed framework is focused exclusively on adaptive SFT
techniques. Some of the Adaptive SFTs have been detailed as
follows: Most prevalent Adaptive SFT technique widely used
for VTs are: Self-configuring optimal programming (SCOP),
Virtualization and Fault Tolerance (VFT), Adaptive N -Version
Programming (A-NVP) and Adaptive Fault Tolerance in Real-
Time Cloud Computing (AFTRC). SCOP was the first known
SFT technique that selects, executes variants and then ad-
judicates the result of the variants dynamically. However, it
is affected adversely by undetected similar errors (addressed
by VFT and AFTRC). Later on, both VFT and AFTRC
were proposed to tolerate faults but could be generalized
to other software components safely. A qualitative compari-
son of these approaches was carried out, asserting AFTRC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSBU Research Open

https://core.ac.uk/display/328342786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

as a more effective approach. A novel framework named
”Diverse Parallel Adjudication based SFT (DPA-SFT)” has
been proposed to address the limitations of existing SFT
techniques. Here, Adjudication is a process for determining
if the correct output is produced by a technique. Parallelism
is a conduciveness of architecture for parallel execution of
adjudication (details om section E). DPA-SFT selects the
variants and adjudication mechanism to address the limitations
of existing techniques when applied with VTs. It constitutes
efficient configuration in the selection of variants and then
in adjudication, with the added feature of parallel and diverse
adjudication. Empirical and descriptive validation of DPA-SFT
advocates the validity of the proposed framework for VTs.
This superiority of DPA-SFT is signified due to the aspects of
lesser time, more reliability and time-resource optimization.
Details of DPA-SFT have been furnished in section III. Rest
of the paper is structured as follows: Section II comprises
the exploration and brief rationale of SFT in VTs, existing
SFT techniques along with their pros and cons. Section III
is dedicated to the detailed description of DPA-SFT: modules
of proposed framework DPA-SFT and some of its exclusive
features. Empirical comparison is furnished in section IV by
designing different experiments. Section V concludes the work
with potential future directions.

II. RELATED WORK

A. Self-Configuring Optimistic Programming scheme (SCOP)

SCOP aims to run a minimum number of variants enough
to achieve maximum reliability. Each phase in a SCOP con-
siders a subset of variants, presented to adjudication by using
information collector syndrome. In case, results are releasable
then verification stops. Selection may lead to successful adju-
dication of the adjudicator. The selection of variant is based
upon the current one, not yet executed. Finally, the remaining
variants are executed. ”Success” is flagged upon successfully
obtaining the required probability, otherwise ”Failure” even if
all the yet unused variants were executed.

B. Adaptive N-version programming (A-NVP)

N-version programming (NVP) approach is generally de-
fined for a fixed amount of duplicate and an immutable
set of versions. This limitation is addressed by an adap-
tive NVP-based algorithm (A-NVP) where configurations are
dynamically constructed. The A-NVP considers application-
specific information and configures the redundancy related
dimensions by means of user-defined parameters. It is designed
to meet the application-specific requirements regarding time
and resources. Keeping in the view of the application domain,
A-NVP may raise the ”Failure” flag to proceed with the sub-
optimal redundancy.

C. Adaptive Fault Tolerance in Real-time Cloud computing
(AFTRC)

AFTRC is a fault tolerance technique for real-time applica-
tions running on cloud infrastructure. This scheme tolerates the
faults based on the reliability of each virtual machine running

on the cloud. The selection and removal of the virtual nodes
are based upon its reliability. Two nodes are considered; virtual
machine and adjudication. A virtual machine contains the real-
time application along with acceptance test which validates its
logic. This scheme provides both forward recoveries as well
as optional backward recovery in the context of VTs.

D. Adaptive Fault Tolerance in Autonomous Vehicular Tech-
nologies

A fault-tolerant vehicular application gives a sufficient
amount of time for counter actions if a critical fault occurs
that enables stopping for vehicles safely. The complexity of
autonomous vehicles cannot be measured easily due to the
state explosion problem (hence the assurance for SFT). So
model checking is widely used technique to perform formal
verification of these applications. Another research [9] focuses
on Robot control and multi-agent planning in VT via formal
methods in UAV surveillance, intelligence, and reconnaissance
missions. LTL was used as the sole specification language.
The major purpose of this research is to plan multiple vehicles
missions by a single operator, which can execute a set of tasks
to multiple UAV vehicles. The research by [10, 11] focuses
on distributed car control system, which can help to measure
car safety hazards effectively by coordinating their control
actions. Reliability issues have been faced by employing these
models such as distributed car control with hybrid systems.
It makes the verification of safety objectives challenging,
collision freedom verification during the process of local lane
control, global lane control and local highway control using
formal techniques. So a thorough mechanism is desired to
measure and manage SFT in these modules (related to lane
control) of autonomous VTs.

E. Evaluation Criteria

There are usually three main stages in all adaptive SFT
techniques: configuration, adjudication, and diversity. Every
stage requires some features to be addressed. In [12], 25
parameters are enumerated, from which 19 parameters have
been taken based upon their applicability in our scope or
any general application i.e. modules of lane control in VTs.
Besides, three new evaluation parameters have been intro-
duced: Application independent adjudication, Parallelism, and
Configuration before first execution.
Application Independent Adjudication is an adjudication
related property. It occurs when an adjudicator is very specific
to an application and cannot be generalized. This leads to
the additional cost of adjudicator’s development. Application-
specific dependability disregards universality and brings addi-
tional development cost. Thus, it is an adjudication anomaly
and is associated with AT.
Parallelism is a conduciveness of architecture for parallel
execution of variants or adjudication. This greatly saves time
overhead, which is there in sequential variants’ execution and
adjudication.
Configuration before First Execution assists in optimum
resource utilization, even on the first run. This could be

done by keeping in view the software/hardware against user
time and reliability requirements. Therefore, the selection of
variants and efficient utilization events before and after (even
the first) execution of the program, can prevent system failure.

A variety of Adaptive SFT parameters have been identified
but 22 evaluation parameters were selected from [12]. R and
P are based on their resource and performance impact. This
influence may be presented as positive or negative + and − .
Moreover, AFTRC showed better performance so it has been
selected as a baseline technique for comparative evaluation.

III. DPA-SFT - THE PROPOSED FRAMEWORK

A framework named ”DPA-SFT” Diverse Parallel
Adjudication based SFT (DPA-SFT) has been proposed
to overcome the deficiencies of existing techniques while
maintaining their strengths. Table I shows the minimum
software and hardware requirements: DPA-SFT constitutes
multiple adjudicators, which work in parallel. However,
DPA-SFT can work even with only 1 variant and one
adjudicator (i.e. AT) but for exploiting benefits of its
complete functionality, there is a need to have at least 6
variants, and 7 processors with all the adjudicators.

TABLE I
SOFTWARE AND HARDWARE REQUIREMENTS OF DPA-SFT

Requirements Minimum functionality Moderate functionality Full functionality
Resource 2× processors 3× processors ≥ 7× processors

1× variants 2× variants ≥ 6× variants

1× AT 1× comparator
1× AT
1× comparator
1× voter

1× controller 1× controller 1× controller
Configuration Experimentally

calculated
reliabilities
of variants

Experimentally
calculated
reliabilities
of variants

Experimentally
calculated
reliabilities
of variants

A. Structure of DPA-SFT

DPA-SFT has 9 components as shown in Figure 1. 2-
phases1 (single border without gray filling), 4-stages2 (marked
with gray filling), 2 assistive components (marked with black
filling and double border) and 1 permanent but editable data
structure V-repository (marked by an empty circle and doted
border). The block diagram shows two types of transitions.
First represents a transfer of control, marked with a dotted
line having double arrow and tail, second is the transfer of
data, marked by bold line with a filled arrow. Then there is
an arrow coming from watchdog timer going through result
repository to the ending node. This denotes the completion
of the algorithm while checking the value in the resulting
repository.

1Phase is a term used for a node that has been traversed only once
2Stage is a term used for a node that can be traversed more than once

Fig. 1. Proposed Framework: DPA-SFT

B. Phases of DPA-SFT

1) Elicitation phase: In this phase, all the required in-
formation has been elicited which is necessary for effective
configuration, efficient reliability measurement and resource
awareness. This information includes:

1) Number of available Processors, denoted by |R|
2) Minimum available Time, denoted by Tmin

3) Maximum available Time, denoted by Tmax

4) Minimum required Reliability, denoted by Rmin

5) Maximum required Reliability, denoted by Rmax

2) Configuration Phase: Configuration phase is responsible
for the selection of variants and their dissemination in buckets.
This phase makes a decision based upon information collected
in the elicitation phase, and data read from ”Variants Reposi-
tory”. The selection of variants has been made over following
rules:

1) Select from available variants having execution time
lesser than (Tmax + α + β) and named it as InTimeV.
Where α is a time taken by configuration, adjudication
and result transformation, etc, and β is an additional
time taken by certain hardware.

2) Select the variant from InTimeV having reliability (upon
success) is greater than or equal to Rmin and named it
as ReliableV

3) Select the most reliable variants to form ReliableV that
can be run on (|R| − 1) resources and named it as SV
(Selected Variants). 1 has been subtracted because one
processor would be reserved for timing.

Dissemination has been done on following rulings:

1) Variants having reliability less than or equal to Low-level
(LL) are subjected to AT Bucket or simply (AB)

2) Variants having reliability greater than Low-level are
examined in such a way that: If any pair of variants
exist having a reliability difference greater than or equal
to ”Degree of Diversity” (RD) is sent to comparator
Bucket (CB). Otherwise, variant(s) would be sent to
Voters Bucket (VB).

3) If VB has less than two variants, these variants would
also be sent to AB

C. Stages of DPA-SFT
1) Variants Execution Stage: In this stage, selected variants

are executed in a multiprocessing environment. Every variant
is expected to have the capability to terminate its execution if
its execution time becomes greater than (TimeV + β). Such
variants send a null result as an output. In case of involvement
of MHD, a variant once executed with the original and re-
expressed input may not be re-executed; only its result is used
for adjudication.

2) Adjudication Stage: The adjudication stage has three
modules:
Voter Module contains the Majority voter and voter result
assessor. Voter result assessor halts until results from all the
variants placed in VB provide a result. After all the results are
received, they are subjected to ResultVB and then to voters
for adjudication. If the majority is reached then the Reliability
assessor is invoked. In case of a lack of majority, all the results
are sent to ResultAB for preventing the occurrence of MCR.
Comparator Module contains Comparator and Comparator
result assessor. Comparator result assessor is halted as long
as both variants in a pair produce results. Once both the
variants give results, it is placed in ResultCB and checked by a
comparator. If the comparison stage passes then the Reliability
assessor is invoked. But in case of failure, both results are sent
to ResultAB to prevent the occurrence of MCR.
AT Module consists of AT and AT-assessor. AT-assessor waits
as long as it gets the result from any variant of AB. When all
the resulting variants are adjudicated, it is checked if there is
any result left for adjudication in CB or VB. It is because of
those results that can be sent to AB upon failure to prevent
the occurrence of MCR.

3) Maximal Hybrid Diversity stage: It is the input generator
module. The input is produced for the first time. All the
variants may not produce results with reliability at least Rmax,
so this phase re-expresses the input. Successful variants and
re-expressed ones are not sent to MHD. Such variant are con-
sidered as fail variants and their reliability gets decremented.
MHD is done only for the fail variants.

D. Memory Components
1) Variants’ Repository: Variants repository is a storage

component that contains the following information for all the
available variants:

• Identity of a variant usually denoted by Vi. Where i is
an index of a variant.

• Reliability of a variant, denoted by RelVi
• Trails faced by a variant, denoted by TrialVi
• Time of execution of a variant TimeVi

It is used by the configuration stage and reliability assessor.
Variants repository has been updated after every trial for all
participating variants, regardless of getting a pass or fail in
adjudication.

2) Result Repository: Result repository is a storage com-
ponent that contains following data from a variant having
reliability greater than or equal to the Rmin and is denoted by
Vx;

• Result of Vx, denoted by ResultVx
• Reliability of Vx, denoted by RelVx
• Time of execution of Vx, denoted by TimeVx

If any other variant achieves reliability greater than RelVx,
then Vx is replaced by that variant.

E. Assistive Components

1) Reliability Assessor: Its responsibility is to calculate
reliability and then store it in Variants repository. Success
variants reliability is increased and fail variants reliability
is decreased. Reliability is a real number which is always
between 0 to 1.

2) Watch Dog Timer: It is an independent component
responsible for checking the elapsed time (Telapsed). It starts
right after the elicitation phase. The working of the watchdog
timer is shown in Flowchart below.

F. Exclusive Features of DPA-SFT

DPA-SFT offers a few important features that have not been
considered so far to the best of our knowledge. This section
briefly discusses these features.

1) Consideration of minimum available time: This is very
beneficial in scenarios where prior results are not effective
enough for acceptance and considered as performance failure.
In DPA-SFT, once the elapsed time is less than min available
time, the system either awaits either highly reliable result
or wait until min. available time equalizes the elapsed time.
When: Tmin > Telapsed Then Seek more reliable result until
Telapsed = Tmin

2) Consideration of maximum required results reliability:
This is the upper limit of reliability that user/environment
desires. The program tries to achieve maximum reliability
as long as time factor permits to do so. When: Rmin ≤
RelVx ≤ Rmax Telapsed ≤ Tmax Then DPA-SFT seeks for
more reliable result by re-expressing the input until either
RelV x ≥ Rmax Or Telapsed = Tmax

3) Initial variant’s Reliability: AFTRC assigned reliability
score of ’1’ to all nodes. Nevertheless, if it has not been
run before. Likewise, VFT gives ’0.5’ reliability to all nodes.
DPA-SFT considers experimentally calculated reliability, so it
possesses mature figures of reliability. If reliability has not
been calculated at the time of testing, it is considered as 0.5
for all variants.

4) Available Variants (|V |) and Available Processors (|R|):
AFTRC and VFT supposed |V | ≈ ∞ so it cannot be gener-
alized nor configured in case of limited resources. Whereas
DPA-SFT selects most reliable variants when |V | ≥ |R|and
all variants when |V | ≤ |R|.

5) Application-Independent adjudication: This is incorpo-
rated by introducing comparator and voter. This significantly
reduces development cost, saves time and provides deliverance
from dependent adjudication. DPA-SFT can effectively work
in the absence of AT.

6) Guard against MCR : This is accomplished by AT,
which evaluates every result that is failed by comparator and
voter.

TABLE II
TIME (µs) TAKEN BY DIFFERENT ACTIVITIES IN DPA-SFT

Activity Tasks 1st Trial 2nd Trial 3rd Trial 4th Trial 5th Trial Average

Configuration
Timer Filtration 20 18.7 17.5 19.3 17.5 18.6
Reliability filtration 13.6 12.1 12.1 11.5 12.1 12.3
Resource Filtration 16.3 13.9 16.9 20.5 19.9 17.5

Variants’ execution

Local Lane Control 1427.2 1422.4 1400.6 1386.1 1383.7 1404
Global Lane Control 185.3 182.3 179.3 176.9 170.3 178.8
Cruise Control Module 266.8 264.4 260.8 254.2 254.2 260.1
Overtaking Module 297 295.2 294 288 285.6 292
California PATH Tracking 298.2 296.4 292.8 286.8 285.6 292
CICAS 1,126.3 1,197.8 1102.4 1099.4 1078.8 1,120.94
Distance to leading vehicle 736.5 723.3 719.6 717.8 716.6 722.8
Percentage Traffic Light 127.4 126.8 125 119.5 117.1 123.2

Adjudication

1st condition check 81.5 79.7 79.1 76.7 76.1 78.6
2nd condition check 54.9 53.7 50.7 50.1 49.5 51.8
3rd condition check 246.9 202.2 200.4 198.6 176.3 204.9
AT 383.4 335.7 330.2 325.4 301.9 335.3
Comparator 1.2 1.2 1.2 1.2 1.2 1.2
Voter 63.4 61.6 61.6 60.4 60.4 61.5

Reliability calcuation Success variant 26917.5 28640.5 26681.8 27831.9 27472.2 27508.8
Fail variants 834.9 1015.5 846.4 975 843.3 903

7) Provision of parallel adjudication mechanism: This fea-
ture is provided by either multiple copies of AT or by using
comparator for diverse and voter for the most reliable variants.

8) Minimizing chance Similar Errors’ occurrence: The
chance for occurrence of similar errors are minimized by
adjudicating the most diverse variants through comparator and
most reliable variants by voter

9) Optimal configuration: Optimal configuration before
execution for selection and dissemination of variants is im-
portant. Selection of quality variants that could give results
in-time and are reliable enough to meet reliability require-
ments and could be run in available resources. The DPA-
SFT disseminates variants, to remove chances of occurrence
of similar errors by adjudicating the most reliable variants by
Voter and most diverse variants by Comparator. As detailed
implementation information of the variants is unavailable, their
diversity has been assessed using reliability information.

10) Incorporation of data and design diversity: Both types
of diversity are used to cope with design and input related
faults together with the added feature of MHD.

11) Least Resource Demanding: DPA-SFT provides an
architecture that can execute with as minimal resources as two
processors. The first processor to be used for the execution
of variants and AT; other for WatchDogTimer. Once there
are as many numbers of processors as the variants, DPA-
SFT attempts to invoke all adjudicators and variants to run
in parallel. Consideration

12) Selection of Quality Variants: The selection of quality
variants is a key to success in SFT. Such selection is dependent
upon the reliability and execution time of variants. DPA-SFT
continuously monitors and updates its information in every
trial. The variants’ repository is updated every time that helps
to further enrich the configuration phase.

IV. EVALUATION OF DPA-SFT
Prototype implementation and execution has been done on

the system having specifications: Intel Core (TM) i5-3317U

CPU @ 1.70Ghz, 4GB RAM, 64 Bit Operating system on
surface pro -1 with Windows 10.

A. Time computed by different components

1) Time taken by Configuration: The configuration phase
works in three steps. In first step, variants are filtered that may
be executed within max. available time. In second step, vari-
ants are filtered from inTime variants to acquire the required
level of reliability. In 3rd step those variants are selected form
reliable results that can run on available resources optimally.
Time (in µs) taken by these steps is calculated in 5-trials
and average time taken in microseconds (µs) is considered.
Average of the completion of tasks is considered in an average
environment.

2) Time taken by Variants execution: Eight different algo-
rithms of VT modules were acquired from Github [13] and
other sources [14, 15] as variants. Then every algorithm was
run 5 times to sort an array of 10 thousand randomly generated
element. The average time taken was recorded in microseconds
(µs).

3) Time taken by Adjudication: In order to measure the
system tolerance, three adjudicators were developed i.e. AT,
Comparator and Voter. Adjudication time was recorded first,
by sending all the variants to AT, then to Comparator and then
to Voter. It was assumed that all results have been passed by
AT and got 100% consensus (when sent for comparison and
voting).

4) Time taken by Reliability Assessment: Reliability has
been calculated (as per the formula shown in the respective
flowchart) for both the pass and failed variants. Five trials were
developed to re-calculate the reliability of variants and came
up with the following results.

B. Comparison to overcome adjudication anomalies

As far as overcoming the 4-adjudication anomalies is con-
cerned, AFTRC is the best (as shown in Table-2). So DPA-SFT

was compared with AFTRC in addressing the adjudication
anomalies. For this comparison, following configurations were
assumed:

1) R = 9; |V | = 8;
2) Tmax = Total time taken for execution of all tasks
Overview of time and resource was taken by DPA-SFT and

then AFTRC was mapped to the table 2 and 3 respectively in
adjudication (exclusively). AFTRC has only AT to adjudicate
results whereas DPA-SFT has AT, comparator and voter for
adjudication based upon the reliability of variants.

Fig. 2. Comparison of time (µs) utilization

Fig. 3. Comparison of Resource Utilization

1) DPA-SFT saves more time and resources when variants
are either “reliable” or “reliable and diverse”.

2) When reliable and diverse variants fail to tolerate MCR,
DPA-SFT takes more time under the same resources to
prevent system from MCR.

3) When variants are less reliable, resource and time con-
sumption in DPA-SFT for adjudication is the same as in
AFTRC.

4) Similar error usually occurs when either variant is not
reliable or is not sufficiently diverse. To ensure preven-
tion from similar errors DPA-SFT transmits only the
most reliable variants to voters, then most reliable but
diverse variants to the comparator. So in the best-case

scenario, there are a handful of resources and time saved.
In the worst case, there could be an occurrence of similar
errors.

5) DPA-SFT, a novel approach to prevent the occurrence of
MCR and to minimize the occurrence of similar errors
with maximum time and resource-saving.

6) DPA-SFT can work even in the absence of ’AT’, so
significantly minimizes the development cost and deliv-
erance from application dependent adjudicator i.e. AT.

C. Comparison in Efficient Configuration

For the comparison, following environmental variables have
been assumed:

1) |V |=8; R=9
2) Tmax < Time of execution of all tasks (for best case)
3) Tmax > Time of execution of all tasks (for worst case)
Time and resource utilization in ”Fail” and ”Pass” configu-

ration have been plotted in the Table IV. Best case and Worst
case were considered: The best case means variants have been
successfully declared unfit because either variant could not
produce results within time or required reliable results. Time
and resources will vary in both conditions. Table III furnishes

TABLE III
COMPARISON IN EFFICIENT CONFIGURATION UTILIZATION

 DPA-SFT Other
Conclusion Time

Resource Utilization
Time
Check

Reliability
Check

Remaining
execution All Tasks

Result vs Available time

Time (µs)
Best

18.6
0

29,247.3
DPA-SFT saves 29,228.7 µs

Worst 12.3 29,264.8 DPA-SFT takes 48.4 µs more time

Resources
Best

1
0

8
DPA-SFT saves 7 processors

Worst 1 8 DPA-SFT = other techniques
 Required Reliability vs Acquired Reliability

Time (µs) Best 18.6 12.3 0 29,247.3 DPA-SFT saves 29,216.4 µs
Worst 29,264.8 DPA-SFT takes 48.4 µs more time

Resources
Best

1
0

8
DPA-SFT saves 7 processors

Worst 8 DPA-SFT = other techniques

that the resource and respective utilization for selecting the
most optimal solution.

1) When none among the available variants could produce
the results within the available time, the system is
terminated and a failure message is transmitted 29,228.7
µs before the adaptive techniques.

2) When required reliability is not achieved by the available
variants, DPA-SFT may be terminated at the time of
configuration and sends failure message 29,216.4 µs
before all other adaptive techniques.

V. CONCLUSION AND FUTURE DIRECTION

The indispensability of reliable autonomous vehicles de-
mands an extreme fault-tolerant system. Failures of any com-
ponent in VT applications imply the failure of existing SFT
techniques. It is caused by lack of any of the aspects: adjudi-
cation, diversity or in adaptiveness. These shortcomings have
been precisely highlighted and addressed in this research over
a variety of test-beds from VTs. A framework named ”DPA-
SFT” has been proposed with optimum parameters. Com-
parative analysis of DPA-SFT with the prevalent approaches

asserts the viability of the proposed framework. The prototype
implementation of DPA-SFT enlists the associated overheads.
But still, it is a feasible choice to prevent the consequences
of failures. We look forward to further refine DPA-SFT by
considering following potential areas: The proposed technique
is based upon the presumption of available min and maximum
required reliability, without being discussed the computation
of these reliabilities. The effort may be put to quantity the
initial reliability of the variant before put into the proposed
framework. Data diversity is cost-effective relative to design
diversity, yet it can achieve sporadic attention by the research
community. Therefore, an effort in the effectiveness of data
diversity can be a good addition. All the SFT techniques are
heavily dependent upon the reliability of adjudicators (AT and
Voter). So there is a need to make more reliable adjudicators
that are our potential future target.

REFERENCES

[1] X. M. Z. e. a. L. Zhou, J. H. She, “Performance en-
hancement of repetitive-control systems and application
to tracking control of chuck-workpiece systems,” IEEE
Transactions on Industrial Electronics, vol. 17, no. 6, pp.
1–18, 2019.

[2] M. C. G. Ali, N. Rahim, “Analysis and improvement
of reliability through coding for safety message broad-
casting in urban vehicular networks,” IEEE Trans. Veh.
Technol, vol. 67, no. 3, pp. 6774—6787, 2018.

[3] M. B. M. Asplund, A. Manzoor, “A formal approach
to autonomous vehicle coordination,” in International
Symposium on Formal Methods, 2012.

[4] M. F. A. Zita, S. Mohajerani, “Application of formal
verification to the lane change module of an autonomous
vehicle,” in 13th IEEE Conference on Automation Sci-
ence and Engineering (CASE), 2017.

[5] M. A. J. Almeida, J. Rufino, “A survey on fault toler-
ance techniques for wireless vehicular networks,” MDPI
Journal of Electronics, vol. 8, no. 11, pp. 1358–1371,
2019.

[6] A. F. S Seelem, “Effective fault-tolerant control paradigm
for path tracking in autonomous vehicles,” Systems Sci-
ence and Control Engineering, vol. 3, no. 1, pp. 177–188,
2015.

[7] B. N. A. Mihaly, P. Gaspar, “Multiple fault-tolerant in-
wheel vehicle control based on high-level control recon-
figuration,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 8606–
8611, 2017.

[8] R. Y. X. Liu, Y. Shang, “A hybrid fault-tolerant control
for nonlinear active suspension systems subjected to ac-
tuator faults and road disturbances,” Hindawi Journal of
Vehicular Complexity, ISSN: 1076-2787 (Print), vol. 20,
no. 12, pp. 15–29, 2020.

[9] U. T. L. Humphrey, “Formal specification and synthesis
of mission plans for unmanned aerial vehicles,” AAAI
Spring Symposium - Technical Report ER, vol. 12, no. 2,
pp. 112–126, 2014.

[10] L. N. M. Sarah, A. Platzer, “Adaptive cruise control:

Hybrid, distributed, and now formally verified,” Formal
Methods, Lecture Notes in Computer Science, pp. 20–25,
2011.

[11] F. Z. W. Huang, K. Wang, “Autonomous vehicles testing
methods review,” in IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC), 2016, pp.
121–129.

[12] M. Rizwan, A. Nadeem, and M. B. Khan, “An evaluation
of software fault tolerance techniques for optimality,”
in Emerging Technologies (ICET), 2015 International
Conference on. IEEE, 2015, pp. 1–6.

[13] [Online]. Available: https://github.com/udacity/self-
driving-car/tree/master/vehicle-detection

[14] P. N. M. Sarah, L. Andre, “Adaptive cruise control hy-
brid, distributed, and now formally verified,” in Carnegie
Mellon University, 2011.

[15] Z. Q. M. S. S. Sarwar, Saad Zia, “Context aware ontology
based hybrid intelligent framework for vehicle driver
categorization,” Transaction on Emerging Telecommuni-
cation Technologies, 2019.

