2,943 research outputs found

    Immune checkpoints in circulating and tumor-Infiltrating CD4 + T Cell Subsets in Colorectal cancer patients

    Get PDF
    Blockade of inhibitory immune checkpoints (ICs) is a promising therapeutic approach; however, it has shown limited success in some cancers including colorectal cancer (CRC). The tumor microenvironment (TME) is largely responsible for response to therapy, and its constituents may provide robust biomarkers for successful immunotherapeutic approaches. In this study, we performed phenotypical characterization and critical analyses of key inhibitory ICs and T regulatory cell (Treg)-related markers on CD4+ T cell subsets in CRC patients, and compared with normal colon tissues and peripheral blood from the same patients. We also investigated correlations between the levels of different CD4+ T cell subsets and the clinicopathologic features including disease stage and tumor budding. We found a significant increase in the levels of CD4+FoxP3+Helios+ T cells, which represent potentially highly immunosuppressive Tregs, in the CRC TME. Additionally, tumor-infiltrating CD4+ T cells upregulated programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), T cell immunoglobulin and mucin domain-3 (TIM-3) and lymphocyte-activation gene 3 (LAG-3). We also characterized the expression of PD-1, CTLA-4, TIM-3, and LAG-3 on different CD4+FoxP3−/+Helios−/+ T cell subsets. Interestingly, we found that CTLA-4, TIM-3, and LAG-3 were mainly co-expressed on FoxP3+Helios+ Tregs in the TME. Additionally, FoxP3high Tregs expressed higher levels of Helios, CTLA-4 and TIM-3 than FoxP3low T cells. These results highlight the significance of Tregs in the CRC TME and suggest that Tregs may hamper response to IC blockade in CRC patients, but effects of different IC inhibition regimes on Treg levels or activity warrants further investigations. We also found that CD4+CTLA-4+ T cells in circulation are increased in patients with advanced disease stage. This study simultaneously provides important insights into the differential levels of CD4+ T cell subpopulations and IC expression in CRC TME, compared to periphery and associations with clinicopathologic features, which could be used as potential biomarkers for CRC progression and response to therapy

    Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer

    Get PDF
    Increased numbers of myeloid-derived suppressor cells (MDSCs) are positively correlated with poor prognosis and reduced survivals of cancer patients. They play central roles in tumor immune evasion and tumor metastasis. However, limited data are available on phenotypic/transcriptomic characteristics of the different MDSCs subsets in cancer. These cells include immature (I-MDSCs), monocytic (M-MDSCs), and polymorphonuclear/granulocytic (PMN-MDSCs). Phenotypic characterization of myeloid subsets from 27 colorectal cancer (CRC) patients was assessed by flow cytometric analyses. RNA-sequencing of sorted I-MDSCs, PMN-MDSCs, and antigen-presenting cells (APCs) was also performed. We found that the levels of I-MDSCs and PMN-MDSCs were increased in tumor tissues (TT), compared with normal tissues (NT) in colorectal cancer. Our functional annotation analyses showed that genes associated with histone deacetylase (HDAC) activation- and DNA methylation-mediated transcriptional silencing were upregulated, and histone acetyl transferase (HAT)-related genes were downregulated in tumor-infiltrating I-MDSCs. Moreover, pathways implicated in cell trafficking and immune suppression, including Wnt, interleukin-6 (IL-6), and mitogen-activated protein kinase (MAPK) signaling, were upregulated in I-MDSCs. Notably, PMN-MDSCs showed downregulation in genes related to DNA methylation and HDAC binding. Using an ex vivo model, we found that inhibition of HDAC activation or neutralization of IL-6 in CRC tumor tissues downregulates the expression of genes associated with immunosuppression and myeloid cell chemotaxis, confirming the importance of HDAC activation and IL-6 signaling pathway in MDSC function and chemotaxis. This study provides novel insights into the epigenetic regulations and other molecular pathways in different myeloid cell subsets within the CRC tumor microenvironment (TME), giving opportunities to potential targets for therapeutic benefits

    Rancang Bangun Aplikasi Pembuatan Laporan Keuangan Lembaga Pengelola Dana Zakat Infak Sedekah Berdasarkan PSAK 109 pada YDSF Surabaya

    Full text link
    Foundation Fund Sosial Al-Falah (YDSF) is one of the zakat fund management institutions infaq/charity in Indonesia, precisely located in the city of Surabaya, which is an utilization institution of communities funds and has more than 220.564 benefactor from the private circles and the communities general. YDSF provide information to the communities in the form of financial statements that are presented in a monthly magazine. For the time being financial statements are presented each month in the magazine has not been explain in detail on the type of fund receipts collected and the amount of type of distribution that occurs. Responsibility for the financial statements conducted YDSF can lead to decreased values of accountability as an fund management institution of communities. Based on these problems, YDSF as amil zakat institutions should perform its functions is public accountability the financial statements, need a making application financial reporting zakat infaq/charity based on the PSAK 109. By using PSAK 109 on the reports generated by the system, YDSF can accountable to the public so that receipts and distribution YDSF to be transparent with the details financial statements of the which attached based on each type of fund, among others zakat funds, infaq funds, waqf funds, non halal funds, and amil funds. As for the reporting that have been generated by the system based on the PSAK 109, among others, statements of financial position, statements of changes in funds, reports assets under management, and cash flow statements

    Transcriptomic profiling of tumor-infiltrating CD4 + TIM-3 + T Cells reveals their suppressive, exhausted, and metastatic characteristics in colorectal cancer patients

    Get PDF
    T cell immunoglobulin mucin-3 (TIM-3) is an immune checkpoint identified as one of the key players in regulating T-cell responses. Studies have shown that TIM-3 is upregulated in the tumor microenvironment (TME). However, the precise role of TIM-3 in colorectal cancer (CRC) TME is yet to be elucidated. We performed phenotypic and molecular characterization of TIM-3+ T cells in the TME and circulation of CRC patients by analyzing tumor tissues (TT, TILs), normal tissues (NT, NILs), and peripheral blood mononuclear cells (PBMC). TIM-3 was upregulated on both CD4+ and CD3+CD4− (CD8+) TILs. CD4+TIM-3+ TILs expressed higher levels of T regulatory cell (Tregs)-signature genes, including FoxP3 and Helios, compared with their TIM-3− counterparts. Transcriptomic and ingenuity pathway analyses showed that TIM-3 potentially activates inflammatory and tumor metastatic pathways. Moreover, NF-κB-mediated transcription factors were upregulated in CD4+TIM-3+ TILs, which could favor proliferation/invasion and induce inflammatory and T-cell exhaustion pathways. In addition, we found that CD4+TIM-3+ TILs potentially support tumor invasion and metastasis, compared with conventional CD4+CD25+ Tregs in the CRC TME. However, functional studies are warranted to support these findings. In conclusion, this study discloses some of the functional pathways of TIM-3+ TILs, which could improve their targeting in more specific therapeutic approaches in CRC patients

    What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands

    Get PDF
    Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4’s role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging

    Comparison of 3-Factor Prothrombin Complex Concentrate and Low-Dose Recombinant Factor VIIa for Warfarin Reversal

    Get PDF
    INTRODUCTION: Prothrombin complex concentrate (PCC) and recombinant Factor VIIa (rFVIIa) have been used for emergent reversal of warfarin anticoagulation. Few clinical studies have compared these agents in warfarin reversal. We compared warfarin reversal in patients who received either 3 factor PCC (PCC3) or low-dose rFVIIa (LDrFVIIa) for reversal of warfarin anticoagulation. METHODS: Data were collected from medical charts of patients who received at least one dose of PCC3 (20 units/kg) or LDrFVIIa (1000 or 1200 mcg) for emergent warfarin reversal from August 2007 to October 2011. The primary end-points were achievement of an INR 1.5 or less for efficacy and thromboembolic events for safety. RESULTS: Seventy-four PCC3 and 32 LDrFVIIa patients were analyzed. Baseline demographics, reason for warfarin reversal, and initial INR were equivalent. There was no difference in the use of vitamin K or fresh frozen plasma. More LDrFVIIa patients achieved an INR of 1.5 or less (71.9% vs. 33.8%, p =0.001). The follow-up INR was lower after LDrFVIIa (1.25 vs. 1.75, p < 0.05) and the percent change in INR was larger after LDrFVIIa (54.1% vs. 38.8%, p = 0.002). There was no difference in the number of thromboembolic events (2 LDrFVIIa vs. 5 PCC3, p = 1.00), mortality, length of hospital stay, or cost. CONCLUSIONS: Based on achieving a goal INR of 1.5 or less, LDrFVIIa was more likely than PCC3 to reverse warfarin anticoagulation. Thromboembolic events were equivalent in patients receiving PCC3 and LDrFVIIa

    Vector vortex coronagraph: first results in the visible

    Get PDF
    We report the status of JPL and JDSU ongoing technological developments and contrast results of the vector vortex coronagraph (VVC) made out of liquid crystal polymers (LCP). The first topological charge 4 VVC was tested on the high contrast imaging testbed (HCIT) around 800 nm, under vacuum and with active wavefront control (32x32 Xinetics deformable mirror). We measured the inner working angle or IWA (50% off-axis transmission) at ~ 1.8λ/d. A one-sided dark hole ranging from 3λ/d to 10λ/d was created in polarized light, showing a mean contrast of ~ 2 × 10^(-7) over a 10% bandwidth. This contrast was maintained very close in (3 λ/d) in a reduced 2% bandwidth. These tests begin to demonstrate the potential of the LCP technology in the most demanding application of a space-based telescope dedicated to extrasolar planet characterization. The main limitations were identified as coming from incoherent sources such as multiple reflections, and residual chromaticity. A second generation of improved masks tackling these issues is being manufactured and will be tested on the HCIT in the coming months

    Mental Health of Parents and Life Satisfaction of Children: A Within-Family Analysis of Intergenerational Transmission of Well-Being

    Get PDF
    This paper addresses the extent to which there is an intergenerational transmission of mental health and subjective well-being within families. Specifically it asks whether parents’ own mental distress influences their child’s life satisfaction, and vice versa. Whilst the evidence on daily contagion of stress and strain between members of the same family is substantial, the evidence on the transmission between parental distress and children’s well-being over a longer period of time is sparse. We tested this idea by examining the within-family transmission of mental distress from parent to child’s life satisfaction, and vice versa, using rich longitudinal data on 1,175 British youths. Results show that parental distress at year t-1 is an important determinant of child’s life satisfaction in the current year. This is true for boys and girls, although boys do not appear to be affected by maternal distress levels. The results also indicated that the child’s own life satisfaction is related with their father’s distress levels in the following year, regardless of the gender of the child. Finally, we examined whether the underlying transmission correlation is due to shared social environment, empathic reactions, or transmission via parent-child interaction

    Deproto-metallation using mixed lithium-zinc and lithium-copper bases and computed CH acidity of 2-substituted quinolines

    No full text
    International audience2-Substituted quinolines were synthesized, and their deproto-metallation using the bases prepared by mixing LiTMP with either ZnCl2*TMEDA (1/3 equiv) or CuCl (1/2 equiv) was studied. With phenyl and 2-naphthyl substituents, the reaction occurred at the 8 position of the quinoline ring, affording the corresponding iodo derivatives or 2-chlorophenyl ketones using the lithium-zinc or the lithium-copper combination, respectively. With a 4-anisyl substituent, a dideprotonation at the 8 and 3' position was noted using the lithium-zinc base. With 3-pyridyl, 2-furyl and 2-thienyl substituents, the reaction took place on the subtituent, at a position adjacent to its heteroatom. 2-Chlorophenyl 2-phenyl-8-quinolyl ketone could be cyclized under palladium catalysis. The experimental results were analyzed with the help of the CH acidities of the substrates, determined in THF solution using the DFT B3LYP method

    Efficient two-step access to azafluorenones and related compounds

    No full text
    International audienceCrystals of a lithiocuprate prepared from copper(I) chloride and lithium 2,2,6,6-tetramethylpiperidide (2 equiv) were isolated and analyzed by X-ray diffraction as (TMP)2Cu(Cl)Li2*THF. The observation of this species is consistent with its having a role in deprotocupration-aroylation. Phenyl pyridyl ketones, phenyl quinolyl ketones, and phenyl thienyl ketones were prepared in tetrahydrofuran using the lithiocuprate and aroyl chorides as electrophiles. Diaryl ketones bearing a chloro group at the 2 position (of a pyridyl or phenyl group) thus synthesized were next converted through palladium-catalyzed ring closure to polycycles of the 5H-indeno[1,2-b]pyridin-5-one, 11H-indeno[1,2-b]quinolin-11-one, 9H-indeno[2,1-c]pyridin-9-one, and 8H-indeno[2,1-b]thiophen-8-one families
    corecore