222 research outputs found

    Entanglement in Finitely Correlated Spin States

    Full text link
    We derive bounds for the entanglement of a spin with an (adjacent and non-adjacent) interval of spins in an arbitrary pure finitely correlated state (FCS) on a chain of spins of any magnitude. Finitely correlated states are otherwise known as matrix product states or generalized valence-bond states. The bounds become exact in the limit of the entanglement of a single spin and the half-infinite chain to the right (or the left) of it. Our bounds provide a proof of the recent conjecture by Benatti, Hiesmayr, and Narnhofer that their necessary condition for non-vanishing entanglement in terms of a single spin and the ``memory'' of the FCS, is also sufficient . Our result also generalizes the study of entanglement in the ground state of the AKLT model by Fan, Korepin, and Roychowdhury. Our result permits one to calculate more efficiently, numerically and in some cases even analytically, the entanglement of arbitrary finitely correlated quantum spin chains.Comment: PACS 03.67.Mn, 05.50.+q. Minor typos in v1 corrected. In v2: expanded Introduction and Discussion. Simplified proof of the main resul

    Lieb-Robinson Bounds for the Toda Lattice

    Full text link
    We establish locality estimates, known as Lieb-Robinson bounds, for the Toda lattice. In contrast to harmonic models, the Lieb-Robinson velocity for these systems do depend on the initial condition. Our results also apply to the entire Toda as well as the Kac-van Moerbeke hierarchy. Under suitable assumptions, our methods also yield a finite velocity for certain perturbations of these systems

    A Multi-Dimensional Lieb-Schultz-Mattis Theorem

    Full text link
    For a large class of finite-range quantum spin models with half-integer spins, we prove that uniqueness of the ground state implies the existence of a low-lying excited state. For systems of linear size L, of arbitrary finite dimension, we obtain an upper bound on the excitation energy (i.e., the gap above the ground state) of the form (C\log L)/L. This result can be regarded as a multi-dimensional Lieb-Schultz-Mattis theorem and provides a rigorous proof of a recent result by Hastings.Comment: final versio

    Ordering of Energy Levels in Heisenberg Models and Applications

    Full text link
    In a recent paper we conjectured that for ferromagnetic Heisenberg models the smallest eigenvalues in the invariant subspaces of fixed total spin are monotone decreasing as a function of the total spin and called this property ferromagnetic ordering of energy levels (FOEL). We have proved this conjecture for the Heisenberg model with arbitrary spins and coupling constants on a chain. In this paper we give a pedagogical introduction to this result and also discuss some extensions and implications. The latter include the property that the relaxation time of symmetric simple exclusion processes on a graph for which FOEL can be proved, equals the relaxation time of a random walk on the same graph. This equality of relaxation times is known as Aldous' Conjecture.Comment: 20 pages, contribution for the proceedings of QMATH9, Giens, September 200

    Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems

    Full text link
    We prove Lieb-Robinson bounds for the dynamics of systems with an infinite dimensional Hilbert space and generated by unbounded Hamiltonians. In particular, we consider quantum harmonic and certain anharmonic lattice systems

    Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems

    Get PDF
    Gapped ground states of quantum spin systems have been referred to in the physics literature as being `in the same phase' if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on s[0,1]s \in [0,1], such that for each ss, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that 'belong to the same phase' are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an ss-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings' 'quasi-adiabatic evolution' technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the {\em spectral flow}, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s),0s1H(s), 0\leq s\leq 1.Comment: Updated acknowledgments and new email address of S

    Light-cone-like spreading of correlations in a quantum many-body system

    Get PDF
    How fast can correlations spread in a quantum many-body system? Based on the seminal work by Lieb and Robinson, it has recently been shown that several interacting many-body systems exhibit an effective light cone that bounds the propagation speed of correlations. The existence of such a "speed of light" has profound implications for condensed matter physics and quantum information, but has never been observed experimentally. Here we report on the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open important perspectives for understanding relaxation of closed quantum systems far from equilibrium as well as for engineering efficient quantum channels necessary for fast quantum computations.Comment: 7 pages, 5 figures, 2 table

    Non-equilibrium states of a photon cavity pumped by an atomic beam

    Full text link
    We consider a beam of two-level randomly excited atoms that pass one-by-one through a one-mode cavity. We show that in the case of an ideal cavity, i.e. no leaking of photons from the cavity, the pumping by the beam leads to an unlimited increase in the photon number in the cavity. We derive an expression for the mean photon number for all times. Taking into account leaking of the cavity, we prove that the mean photon number in the cavity stabilizes in time. The limiting state of the cavity in this case exists and it is independent of the initial state. We calculate the characteristic functional of this non-quasi-free non-equilibrium state. We also calculate the energy flux in both the ideal and open cavity and the entropy production for the ideal cavity.Comment: Corrected energy production calculations and made some changes to ease the readin

    Quantum harmonic oscillator systems with disorder

    Full text link
    We study many-body properties of quantum harmonic oscillator lattices with disorder. A sufficient condition for dynamical localization, expressed as a zero-velocity Lieb-Robinson bound, is formulated in terms of the decay of the eigenfunction correlators for an effective one-particle Hamiltonian. We show how state-of-the-art techniques for proving Anderson localization can be used to prove that these properties hold in a number of standard models. We also derive bounds on the static and dynamic correlation functions at both zero and positive temperature in terms of one-particle eigenfunction correlators. In particular, we show that static correlations decay exponentially fast if the corresponding effective one-particle Hamiltonian exhibits localization at low energies, regardless of whether there is a gap in the spectrum above the ground state or not. Our results apply to finite as well as to infinite oscillator systems. The eigenfunction correlators that appear are more general than those previously studied in the literature. In particular, we must allow for functions of the Hamiltonian that have a singularity at the bottom of the spectrum. We prove exponential bounds for such correlators for some of the standard models

    Transport of interface states in the Heisenberg chain

    Get PDF
    We demonstrate the transport of interface states in the one-dimensional ferromagnetic Heisenberg model by a time dependent magnetic field. Our analysis is based on the standard Adiabatic Theorem. This is supplemented by a numerical analysis via the recently developed time dependent DMRG method, where we calculate the adiabatic constant as a function of the strength of the magnetic field and the anisotropy of the interaction.Comment: minor revision, final version; 13 pages, 4 figure
    corecore