188 research outputs found

    A Remote Health Coaching, Text-Based Walking Program in Ethnic Minority Primary Care Patients With Overweight and Obesity: Feasibility and Acceptability Pilot Study

    Get PDF
    BACKGROUND: Over half of US adults have at least one chronic disease, including obesity. Although physical activity is an important component of chronic disease self-management, few reach the recommended physical activity goals. Individuals who identify as racial and ethnic minorities are disproportionally affected by chronic diseases and physical inactivity. Interventions using consumer-based wearable devices have shown promise for increasing physical activity among patients with chronic diseases; however, populations with the most to gain, such as minorities, have been poorly represented to date. OBJECTIVE: This study aims to assess the feasibility, acceptability, and preliminary outcomes of an 8-week text-based coaching and Fitbit program aimed at increasing the number of steps in a predominantly overweight ethnic minority population. METHODS: Overweight patients (BMI \u3e 25 kg/m(2)) were recruited from an internal medicine clinic located in an inner-city academic medical center. Fitbit devices were provided. Using 2-way SMS text messaging, health coaches (HCs) guided patients to establish weekly step goals that were specific, measurable, attainable, realistic, and time-bound. SMS text messaging and Fitbit activities were managed using a custom-designed app. Program feasibility was assessed via the recruitment rate, retention rate (the proportion of eligible participants completing the 8-week program), and patient engagement (based on the number of weekly text message goals set with the HC across the 8-week period). Acceptability was assessed using a qualitative, summative evaluation. Exploratory statistical analysis included evaluating the average weekly steps in week 1 compared with week 8 using a paired t test (2-tailed) and modeling daily steps over time using a linear mixed model. RESULTS: Of the 33 patients initially screened; 30 (91%) patients were enrolled in the study. At baseline, the average BMI was 39.3 (SD 9.3) kg/m(2), with 70% (23/33) of participants presenting as obese. A total of 30% (9/30) of participants self-rated their health as either fair or poor, and 73% (22/30) of participants set up \u3e /=6 weekly goals across the 8-week program. In total, 93% (28/30) of participants completed a qualitative summative evaluation, and 10 themes emerged from the evaluation: patient motivation, convenient SMS text messaging experience, social support, supportive accountability, technology support, self-determined goals, achievable goals, feedback from Fitbit, challenges, and habit formation. There was no significant group change in the average weekly steps for week 1 compared with week 8 (mean difference 7.26, SD 6209.3; P=.99). However, 17% (5/30) of participants showed a significant increase in their daily steps. CONCLUSIONS: Overall, the results demonstrate the feasibility and acceptability of a remotely delivered walking study that included an HC; SMS text messaging; a wearable device (Fitbit); and specific, measurable, attainable, realistic, and time-bound goals within an ethnic minority patient population. Results support further development and testing in larger samples to explore efficacy

    Fractional Dynamics from Einstein Gravity, General Solutions, and Black Holes

    Full text link
    We study the fractional gravity for spacetimes with non-integer dimensions. Our constructions are based on a geometric formalism with the fractional Caputo derivative and integral calculus adapted to nonolonomic distributions. This allows us to define a fractional spacetime geometry with fundamental geometric/physical objects and a generalized tensor calculus all being similar to respective integer dimension constructions. Such models of fractional gravity mimic the Einstein gravity theory and various Lagrange-Finsler and Hamilton-Cartan generalizations in nonholonomic variables. The approach suggests a number of new implications for gravity and matter field theories with singular, stochastic, kinetic, fractal, memory etc processes. We prove that the fractional gravitational field equations can be integrated in very general forms following the anholonomic deformation method for constructing exact solutions. Finally, we study some examples of fractional black hole solutions, fractional ellipsoid gravitational configurations and imbedding of such objects in fractional solitonic backgrounds.Comment: latex2e, 11pt, 40 pages with table of conten

    Effect of ploidy, recruitment, environmental factors, and tamoxifen treatment on the expression of sigma-2 receptors in proliferating and quiescent tumour cells

    Get PDF
    Recently, we demonstrated that sigma-2 receptors may have the potential to be a biomarker of tumour cell proliferation (Mach et al (1997) Cancer Res57: 156–161). If sigma-2 receptors were a biomarker of tumour cell proliferation, they would be amenable to detection by non-invasive imaging procedures, thus eliminating many of the problems associated with the flow cytometric measures of tumour cell proliferation presently used in the clinic. To be a good biomarker of tumour cell proliferation, the expression of sigma-2 receptors must be essentially independent of many of the biological, physiological, and/or environmental properties that are found in solid tumours. In the investigation reported here, the mouse mammary adenocarcinoma lines, 66 (diploid) and 67 (aneuploid), 9L rat brain tumour cells, and MCF-7 human breast tumour cells were used to study the extent and kinetics of expression of sigma-2 receptors in proliferative (P) and quiescent (Q) tumour cells as a function of species, cell type, ploidy, pH, nutrient depletion, metabolic state, recruitment from the Q-cell compartment to the P-cell compartment, and treatment with tamoxifen. In these experiments, the expression of sigma-2 receptors solely reflected the proliferative status of the tumour cells. None of the biological, physiological, or environmental properties that were investigated had a measurable effect on the expression of sigma-2 receptors in these model systems. Consequently, these data suggest that the proliferative status of tumours and normal tissues can be non-invasively assessed using radiolabelled ligands that selectively bind sigma-2 receptors. © 1999 Cancer Research Campaig

    Power management and control strategies for off-grid hybrid power systems with renewable energies and storage

    Get PDF
    This document is the Accepted Manuscript of the following article: Belkacem Belabbas, Tayeb Allaoui, Mohamed Tadjine, and Mouloud Denai, 'Power management and control strategies for off-grid hybrid power systems with renewable energies and storage', Energy Systems, September 2017. Under embargo. Embargo end date: 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s12667-017-0251-y.This paper presents a simulation study of standalone hybrid Distributed Generation Systems (DGS) with Battery Energy Storage System (BESS). The DGS consists of Photovoltaic (PV) panels as Renewable Power Source (RPS), a Diesel Generator (DG) for power buck-up and a BESS to accommodate the surplus of energy, which may be employed in times of poor PV generation. While off-grid DGS represent an efficient and cost-effective energy supply solution particularly to rural and remote areas, fluctuations in voltage and frequency due to load variations, weather conditions (temperature, irradiation) and transmission line short-circuits are major challenges. The paper suggests a hierarchical Power Management (PM) and controller structure to improve the reliability and efficiency of the hybrid DGS. The first layer of the overall control scheme includes a Fuzzy Logic Controller (FLC) to adjust the voltage and frequency at the Point of Common Coupling (PCC) and a Clamping Bridge Circuit (CBC) which regulates the DC bus voltage. A maximum power point tracking (MPPT) controller based on FLC is designed to extract the optimum power from the PV. The second control layer coordinates among PV, DG and BESS to ensure reliable and efficient power supply to the load. MATLAB Simulink is used to implement the overall model of the off-grid DGS and to test the performance of the proposed control scheme which is evaluated in a series of simulations scenarios. The results demonstrated the good performance of the proposed control scheme and effective coordination between the DGS for all the simulation scenarios considered.Peer reviewedFinal Accepted Versio

    Sicily statement on classification and development of evidence-based practice learning assessment tools

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Teaching the steps of evidence-based practice (EBP) has become standard curriculum for health professions at both student and professional levels. Determining the best methods for evaluating EBP learning is hampered by a dearth of valid and practical assessment tools and by the absence of guidelines for classifying the purpose of those that exist. Conceived and developed by delegates of the Fifth International Conference of Evidence-Based Health Care Teachers and Developers, the aim of this statement is to provide guidance for purposeful classification and development of tools to assess EBP learning.</p> <p>Discussion</p> <p>This paper identifies key principles for designing EBP learning assessment tools, recommends a common taxonomy for new and existing tools, and presents the Classification Rubric for EBP Assessment Tools in Education (CREATE) framework for classifying such tools. Recommendations are provided for developers of EBP learning assessments and priorities are suggested for the types of assessments that are needed. Examples place existing EBP assessments into the CREATE framework to demonstrate how a common taxonomy might facilitate purposeful development and use of EBP learning assessment tools.</p> <p>Summary</p> <p><it>The widespread adoption of EBP into professional education requires valid and reliable measures of learning. Limited tools exist with established psychometrics. This international consensus statement strives to provide direction for developers of new EBP learning assessment tools and a framework for classifying the purposes of such tools</it>.</p

    Pulse pressure and age at menopause

    Get PDF
    BACKGROUND: The objective of this study was to study the association of early age at menopause with pulse pressure (PP), a marker of arterial stiffness, and PP change. METHODS: The effect of natural menopause was studied in 2484 women from the Atherosclerosis Risk in Communities (ARIC) Study who had not used hormone replacement therapy and who had not had a hysterectomy. The cross-sectional association of age with PP was evaluated in the entire cohort. The cross-sectional association of recalled age at menopause was evaluated in the 1688 women who were postmenopausal at baseline. PP change over 6 years was assessed in relation to menopausal age separately in women who were postmenopausal at baseline and in those whose menopause occurred during the 6-year interval. RESULTS: Chronological age was strongly and positively associated with PP in cross-sectional analyses, but not independently associated with PP change. While menopausal age was not associated cross-sectionally with PP, early age at menopause (age<45) was significantly and independently associated with a slightly larger increase in PP (8.4, 95% CI 7.0–9.8) than later menopause (6.5, 95% CI 5.8;7.2). However, among normotensive women the difference was not statistically significant (p = 0.07, 6.1 vs 4.7). CONCLUSIONS: Early age at menopause may be related to a greater increase in arterial stiffness, but the effect appears to be small and further evidence is needed

    What we learn about bipolar disorder from large-scale neuroimaging:Findings and future directions from the ENIGMA Bipolar Disorder Working Group

    Get PDF
    MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness

    Geometry and field theory in multi-fractional spacetime

    Full text link
    We construct a theory of fields living on continuous geometries with fractional Hausdorff and spectral dimensions, focussing on a flat background analogous to Minkowski spacetime. After reviewing the properties of fractional spaces with fixed dimension, presented in a companion paper, we generalize to a multi-fractional scenario inspired by multi-fractal geometry, where the dimension changes with the scale. This is related to the renormalization group properties of fractional field theories, illustrated by the example of a scalar field. Depending on the symmetries of the Lagrangian, one can define two models. In one of them, the effective dimension flows from 2 in the ultraviolet (UV) and geometry constrains the infrared limit to be four-dimensional. At the UV critical value, the model is rendered power-counting renormalizable. However, this is not the most fundamental regime. Compelling arguments of fractal geometry require an extension of the fractional action measure to complex order. In doing so, we obtain a hierarchy of scales characterizing different geometric regimes. At very small scales, discrete symmetries emerge and the notion of a continuous spacetime begins to blur, until one reaches a fundamental scale and an ultra-microscopic fractal structure. This fine hierarchy of geometries has implications for non-commutative theories and discrete quantum gravity. In the latter case, the present model can be viewed as a top-down realization of a quantum-discrete to classical-continuum transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and improved (especially section 4.5), typos corrected, references added; v4: further typos correcte
    • …
    corecore