46 research outputs found

    Efficient training of RBF networks for classification.

    Get PDF
    Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. We show how RBFs with logistic and softmax outputs can be trained efficiently using the Fisher scoring algorithm. This approach can be used with any model which consists of a generalised linear output function applied to a model which is linear in its parameters. We compare this approach with standard non-linear optimisation algorithms on a number of datasets

    Bayesian inference for wind field retrieval

    Get PDF
    In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields

    Adding constrained discontinuities to Gaussian process models of wind fields

    Get PDF
    Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling

    Adding constrained discontinuities to Gaussian process models of wind fields

    Get PDF
    Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling

    Online approximations for wind-field models

    Get PDF
    We study online approximations to Gaussian process models for spatially distributed systems. We apply our method to the prediction of wind fields over the ocean surface from scatterometer data. Our approach combines a sequential update of a Gaussian approximation to the posterior with a sparse representation that allows to treat problems with a large number of observations

    PIP-DB:the protein isoelectric point database

    Get PDF
    A protein's isoelectric point or pI corresponds to the solution pH at which its net surface charge is zero. Since the early days of solution biochemistry, the pI has been recorded and reported, and thus literature reports of pI abound. The Protein Isoelectric Point database (PIP-DB) has collected and collated these data to provide an increasingly comprehensive database for comparison and benchmarking purposes. A web application has been developed to warehouse this database and provide public access to this unique resource. PIP-DB is a web-enabled SQL database with an HTML GUI front-end. PIP-DB is fully searchable across a range of properties

    Discovering Conformational Sub-States Relevant to Protein Function

    Get PDF
    Background: Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these substates present significant challenges for their identification and characterization. Methods and Findings: To overcome these challenges we have developed a new computational technique, quasianharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Conclusions: Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function. © 2011 Ramanathan et al

    Computational study of associations between histone modification and protein-DNA binding in yeast genome by integrating diverse information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In parallel with the quick development of high-throughput technologies, <it>in vivo (vitro) </it>experiments for genome-wide identification of protein-DNA interactions have been developed. Nevertheless, a few questions remain in the field, such as how to distinguish true protein-DNA binding (functional binding) from non-specific protein-DNA binding (non-functional binding). Previous researches tackled the problem by integrated analysis of multiple available sources. However, few systematic studies have been carried out to examine the possible relationships between histone modification and protein-DNA binding. Here this issue was investigated by using publicly available histone modification data in yeast.</p> <p>Results</p> <p>Two separate histone modification datasets were studied, at both the open reading frame (ORF) and the promoter region of binding targets for 37 yeast transcription factors. Both results revealed a distinct histone modification pattern between the functional protein-DNA binding sites and non-functional ones for almost half of all TFs tested. Such difference is much stronger at the ORF than at the promoter region. In addition, a protein-histone modification interaction pathway can only be inferred from the functional protein binding targets.</p> <p>Conclusions</p> <p>Overall, the results suggest that histone modification information can be used to distinguish the functional protein-DNA binding from the non-functional, and that the regulation of various proteins is controlled by the modification of different histone lysines such as the protein-specific histone modification levels.</p

    Bayesian inference for wind field retrieval

    No full text
    In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind elds. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind elds
    corecore