156 research outputs found

    Evaluating of the disinfection and water quality effects on UV application in the primary stage of water treatment

    Get PDF
    Background: Irradiation of water by UV has been considered as an attractive alternative for disinfection because its low-impact, pathogen killing capacity shows tremendous promise for meeting today's drinking water regulatory requirements. This study has been performed with the objective of utilizing medium pressure lamp in the preliminary stage of municipal water treatment, namely prior to water clarification and filtration. Methods: Raw water samples were irradiated for 30 s in a lab-scale closed reactor. Disinfection results showed nearly 2 log reduction in HPC for all the samples without formation of nitrite in excess of its MCL. As in a few previous works the formation of nitrite as an objectionable DBP had been reported, this study was extended by preparing synthetic water samples having different amounts of nitrate and turbidities. Results: As far as the initial nitrate concentration dose not exceed 10 mg/L N-NO3, there would be no risk of nitrite increasing in excess of the MCL. Conclusion: Meeting the goal of at least 90 % disinfection for water samples with turbidity levels of as high as 750 NTU is possible by utilizing medium- pressure UV lamp

    Modelling the Effects of Competing Anions on Fluoride Removal by Functionalized Polyacrylonitrile Coated with Iron Oxide Nanoparticles

    Get PDF
    Fe2O3 nano particles supported on functionalized poly-acrylonitrile was prepared. PAN-oxime-nano Fe2O3 was characterized by XRD, FTIR andTEMand used for fluoride adsorption. The adsorption capacity increased with increasing initial fluoride concentration and reaction time. Fluoride-removal performance of PAN-oxime-nano Fe2O3 was also tested in the presence of various competing anions usually found in drinking water. Competitive sorption between fluoride and competing anions showed a minimum preference for chloride counterions. Carbonate was the greatest competitor for fluoride removal followed by phosphate and sulphate. Counterion presence decreased fluoride adsorption capacity in order of CO32−> PO43−> SO42−> Cl−. The presence of anions at various concentrations decreased fluoride adsorption capacity on PAN-oxime-nano Fe2O3 by 1.22 to 6.51 mg g–1. Effects of each two anions exist simultaneously in aqueous solution on fluoride adsorption was investigated using Tukey’s test (called also a pairwise comparison). Tukey’s HSD results indicate that the differences between various pairs of anions are significant (P < 0.05), except for chloride–sulphate (P = 0.08). In the design of PAN-oxime-nano Fe2O3 for environmental applications, the strong influence of the counter ions must be considered.KEYWORDS Fluoride, PAN-oxime- nano Fe2O3, counterion, adsorption

    A Review of Approaches for Sensing, Understanding, and Improving Occupancy-Related Energy-Use Behaviors in Commercial Buildings

    Get PDF
    Buildings currently account for 30–40 percent of total global energy consumption. In particular, commercial buildings are responsible for about 12 percent of global energy use and 21 percent of the United States’ energy use, and the energy demand of this sector continues to grow faster than other sectors. This increasing rate therefore raises a critical concern about improving the energy performance of commercial buildings. Recently, researchers have investigated ways in which understanding and improving occupants’ energy-consuming behaviors could function as a cost-effective approach to decreasing commercial buildings’ energy demands. The objective of this paper is to present a detailed, up-to-date review of various algorithms, models, and techniques employed in the pursuit of understanding and improving occupants’ energy-use behaviors in commercial buildings. Previous related studies are introduced and three main approaches are identified: (1) monitoring occupant-specific energy consumption; (2) Simulating occupant energy consumption behavior; and (3) improving occupant energy consumption behavior. The first approach employs intrusive and non-intrusive load-monitoring techniques to estimate the energy use of individual occupants. The second approach models diverse characteristics related to occupants’ energy-consuming behaviors in order to assess and predict such characteristics’ impacts on the energy performance of commercial buildings; this approach mostly utilizes agent-based modeling techniques to simulate actions and interactions between occupants and their built environment. The third approach employs occupancy-focused interventions to change occupants’ energy-use characteristics. Based on the detailed review of each approach, critical issues and current gaps in knowledge in the existing literature are discussed, and directions for future research opportunities in this field are provided

    stoRNA: Stateless Transparent Proofs of Storage-time

    Get PDF
    Proof of Storage-time (PoSt) is a cryptographic primitive that enables a server to demonstrate non-interactive continuous availability of outsourced data in a publicly verifiable way. This notion was first introduced by Filecoin to secure their Blockchain-based decentralized storage marketplace, using expensive SNARKs to compact proofs. Recent work employs the notion of trapdoor delay function to address the problem of compact PoSt without SNARKs. This approach however entails statefulness and non-transparency, while it requires an expensive pre-processing phase by the client. All of the above renders their solution impractical for decentralized storage marketplaces, leaving the stateless trapdoor-free PoSt with reduced setup costs as an open problem. In this work, we present stateless and transparent PoSt constructions using probabilistic sampling and a new Merkle variant commitment. In the process of enabling adjustable prover difficulty, we then propose a multi-prover construction to diminish the CPU work each prover is required to do. Both schemes feature a fast setup phase and logarithmic verification time and bandwidth with the end-to-end setup, prove, and verification costs lower than the existing solutions

    Goiter frequency is more strongly associated with gastric adenocarcinoma than urine iodine level

    Get PDF
    Purpose: We designed our study to evaluate the hypothesis that gastric cancer is correlated with iodine deficiency or thyroid dysfunction. Materials and Methods: We investigated the total body iodine reserve, thyroid function status and autoimmune disorder in 40 recently diagnosed gastric adenocarcinoma cases versus 80 healthy controls. The participants came from a region with high gastric cancer rate but sufficient iodine supply due to salt iodination. The investigation included urine iodine level, thyroid gland clinical and ultrasonograph-ic examination, and thyroid function tests. Results: Goiter was detected more frequently in the case group (P=0.001); such a finding, however, was not true for lower than normal urine iodine levels. The free T3 mean level was significantly lower in the case group compared to the control group (P=0.005). Conclusions: The higher prevalence of goiter rather than low levels of urinary iodine in gastric adenocarcinoma cases suggests that goi-ter, perhaps due to protracted but currently adjusted iodine deficiency, is more likely to be associated with gastric adenocarcinoma com-pared to the existing iodine deficiency itself. © 2013 by The Korean Gastric Cancer Association

    Effects of Rejuvenators on High-RAP Mixtures Based on Laboratory Tests of Asphalt Concrete Mixtures and Fine Aggregate Matrix Mixtures

    Get PDF
    Although the linear viscoelastic stiffness, fracture characteristics, and permanent deformation behavior of AC mixtures can be determined through experiments, it is generally time-consuming and expensive to reach statistically repeatable results. Thus, it is attractive to pursue alternative methods that are cheaper, faster, and repeatable in order to efficiently evaluate and predict asphalt mixtures’ core mechanical characteristics (such as stiffness, fatigue, and plastic deformation)

    Feasibility study of organic matter and Ammonium removal using loofa sponge as a supporting medium in an aerated submerged fixed-film reactor (ASFFR)

    Get PDF
    Biofilm systems are efficient in the removal of organic matter and ammonium from wastewaters. In this study, loofa sponge, a natural product, was used as a supporting medium in an aerated submerged fixed-film reactor to evaluate its performance in removing organic matter and nitrogen from wastewater. Four pilot runs were performed with chemical oxygen demand (COD) concentrations of 100, 200, 300 and 400 mg l-1 to provide an organic loading rate of 0.6, 1.2, 1.8, and 2.4 kg m-3d-1 respectively. In these pilot runs, the influent ammonium nitrogen concentrations were justified to 5, 10, 15 and 20 mg l-1 as N to provide an influent nitrogen loading of 30, 60, 90 and 120 g m-3.d-1 respectively. Although soluble COD removal efficiency greater than 80 percent was achieved up to a loading rate of 2.4 kg m-3d-1, loofa deformation and clogging after 72 days of application might be considered a serious shortcoming during use in full-scale applications. Nitrogen removal efficiency decreased from 85.6% at an organic loading rate of 0.6 kg m-3d-1 to 56.1% at an organic loading rate of 2.4 kg m-3d-1

    Composition and production rate of dental solid waste and associated management practices in Hamadan, Iran

    Get PDF
    The objective of this study was to identify the components, composition and production rate of dental solid waste and associated management practices in dental offices in Hamadan. A total of 28 offices, including ten general dentist offices, eight specialist dentist offices, five practical dentist offices and five denture maker offices were selected in a random way. Three samples from each selected type were taken and the waste was manually separated into 74 sub-fractions and each sub-fraction was weighed. The results showed that the total annual dental waste production in dental offices was 41947.43 kg. Domestic type, potentially infectious, chemical and pharmaceutical and toxic waste constituted 71.15, 21.40, 7.26 and 0.18, respectively of this amount. Only seven fractions including gypsum, latex gloves, nylon, dental impression material, used medicine ampoules, saliva-contaminated paper towels and saliva ejectors constituted about 80 of the waste. It was also indicated that there were no effective activity for waste minimization, separation, reuse and recycling in dental offices and the management of sharps, potentially infectious waste and other hazardous waste was poor. © The Author(s) 2012
    • 

    corecore