916 research outputs found

    The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes.

    Get PDF
    Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. How the enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish bidirectional movement is unknown. Here we show that nucleosome movement depends cooperatively on two ACF molecules, indicating that ACF functions as a dimer of ATPases. Further, the nucleotide state determines whether the dimer closely engages one or both sides of the nucleosome. Three-dimensional reconstruction by single-particle electron microscopy of the ATPase-nucleosome complex in an activated ATP state reveals a dimer architecture in which the two ATPases face each other. Our results indicate a model in which the two ATPases work in a coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing processive bidirectional movement. This novel dimeric motor mechanism differs from that of dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally and reflects the unique challenges faced by motors that move nucleosomes

    Controlling Stray Electric Fields on an Atom Chip for Rydberg Experiments

    Get PDF
    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbates distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V/cm0.2\,\textrm{V/cm} at 78 μm78\,\mu\textrm{m} from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Ryberg atoms near surfaces, including atom chips

    On the differential geometry of curves in Minkowski space

    Full text link
    We discuss some aspects of the differential geometry of curves in Minkowski space. We establish the Serret-Frenet equations in Minkowski space and use them to give a very simple proof of the fundamental theorem of curves in Minkowski space. We also state and prove two other theorems which represent Minkowskian versions of a very known theorem of the differential geometry of curves in tridimensional Euclidean space. We discuss the general solution for torsionless paths in Minkowki space. We then apply the four-dimensional Serret-Frenet equations to describe the motion of a charged test particle in a constant and uniform electromagnetic field and show how the curvature and the torsions of the four-dimensional path of the particle contain information on the electromagnetic field acting on the particle.Comment: 10 pages. Typeset using REVTE

    Polar distortions in hydrogen bonded organic ferroelectrics

    Full text link
    Although ferroelectric compounds containing hydrogen bonds were among the first to be discovered, organic ferroelectrics are relatively rare. The discovery of high polarization at room temperature in croconic acid [Nature \textbf{463}, 789 (2010)] has led to a renewed interest in organic ferroelectrics. We present an ab-initio study of two ferroelectric organic molecular crystals, 1-cyclobutene-1,2-dicarboxylic acid (CBDC) and 2-phenylmalondialdehyde (PhMDA). By using a distortion-mode analysis we shed light on the microscopic mechanisms contributing to the polarization, which we find to be as large as 14.3 and 7.0\,μ\muC/cm2^{2} for CBDC and PhMDA respectively. These results suggest that it may be fruitful to search among known but poorly characterized organic compounds for organic ferroelectrics with enhanced polar properties suitable for device applications.Comment: Submitte

    The geometry of entanglement: metrics, connections and the geometric phase

    Full text link
    Using the natural connection equivalent to the SU(2) Yang-Mills instanton on the quaternionic Hopf fibration of S7S^7 over the quaternionic projective space HP1≃S4{\bf HP}^1\simeq S^4 with an SU(2)≃S3SU(2)\simeq S^3 fiber the geometry of entanglement for two qubits is investigated. The relationship between base and fiber i.e. the twisting of the bundle corresponds to the entanglement of the qubits. The measure of entanglement can be related to the length of the shortest geodesic with respect to the Mannoury-Fubini-Study metric on HP1{\bf HP}^1 between an arbitrary entangled state, and the separable state nearest to it. Using this result an interpretation of the standard Schmidt decomposition in geometric terms is given. Schmidt states are the nearest and furthest separable ones lying on, or the ones obtained by parallel transport along the geodesic passing through the entangled state. Some examples showing the correspondence between the anolonomy of the connection and entanglement via the geometric phase is shown. Connections with important notions like the Bures-metric, Uhlmann's connection, the hyperbolic structure for density matrices and anholonomic quantum computation are also pointed out.Comment: 42 page

    Bundle Theory of Improper Spin Transformations

    Full text link
    {\it We first give a geometrical description of the action of the parity operator (P^\hat{P}) on non relativistic spin 12{{1}\over{2}} Pauli spinors in terms of bundle theory. The relevant bundle, SU(2)⊙Z2→O(3)SU(2)\odot \Z_2\to O(3), is a non trivial extension of the universal covering group SU(2)→SO(3)SU(2)\to SO(3). P^\hat{P} is the non relativistic limit of the corresponding Dirac matrix operator P=iγ0{\cal P}=i\gamma_0 and obeys P^2=−1\hat{P}^2=-1. Then, from the direct product of O(3) by Z2\Z_2, naturally induced by the structure of the galilean group, we identify, in its double cover, the time reversal operator (T^\hat{T}) acting on spinors, and its product with P^\hat{P}. Both, P^\hat{P} and T^\hat{T}, generate the group Z4×Z2\Z_4 \times \Z_2. As in the case of parity, T^\hat{T} is the non relativistic limit of the corresponding Dirac matrix operator T=γ3γ1{\cal T}=\gamma^3 \gamma^1, and obeys T^2=−1\hat{T}^2=-1.}Comment: 8 pages, Plaintex; titled changed, minor text modifications, one reference complete

    Magnetic-film atom chip with 10 μ\mum period lattices of microtraps for quantum information science with Rydberg atoms

    Get PDF
    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μ\mum, suitable for experiments in quantum information science employing the interaction between atoms in highly-excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cut out of a silver foil, was mounted under the atom chip in order to load ultracold 87^{87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.Comment: 7 pages, 7 figure
    • …
    corecore