Although ferroelectric compounds containing hydrogen bonds were among the
first to be discovered, organic ferroelectrics are relatively rare. The
discovery of high polarization at room temperature in croconic acid [Nature
\textbf{463}, 789 (2010)] has led to a renewed interest in organic
ferroelectrics. We present an ab-initio study of two ferroelectric organic
molecular crystals, 1-cyclobutene-1,2-dicarboxylic acid (CBDC) and
2-phenylmalondialdehyde (PhMDA). By using a distortion-mode analysis we shed
light on the microscopic mechanisms contributing to the polarization, which we
find to be as large as 14.3 and 7.0\,μC/cm2 for CBDC and PhMDA
respectively. These results suggest that it may be fruitful to search among
known but poorly characterized organic compounds for organic ferroelectrics
with enhanced polar properties suitable for device applications.Comment: Submitte