15 research outputs found

    Leukotactin-1/CCL15-induced chemotaxis signaling through CCR1 in HOS cells

    Get PDF
    AbstractLeukotactin-1 (Lkn-1)/CCL15 is a recently cloned CC-chemokine that binds to the CCR1 and CCR3. Although Lkn-1 has been known to function as a chemoattractant for neutrophils, monocytes and lymphocytes, its cellular mechanism remains unclear. To understand the mechanism of Lkn-1-induced chemotaxis signaling, we examined the chemotactic activities of human osteogenic sarcoma cells expressing CCR1 in response to Lkn-1 using inhibitors of signaling molecules. Inhibitors of Gi/Go protein, phospholipase C (PLC) and protein kinase Cδ (PKCδ) inhibited the chemotactic activity of Lkn-1 indicating that Lkn-1-induced chemotaxis signal is transduced through Gi/Go protein, PLC and PKCδ. The activities of PLC and PKCδ were also enhanced by Lkn-1 stimulation. Chemotactic activity of Lkn-1 was inhibited by the treatment of cycloheximide and actinomycin D suggesting that newly synthesized proteins are needed for chemotaxis. Nuclear factor-κB (NF-κB) inhibitor reduced chemotactic activity of Lkn-1. DNA binding activity of NF-κB was also enhanced by Lkn-1 stimulation. These results suggest that Lkn-1 transduces the signal through Gi/Go protein, PLC, PKCδ, NF-κB and newly synthesized proteins for chemotaxis

    Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants

    Get PDF
    miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology

    Charge Transfer across Liquid—Liquid Interfaces

    No full text
    corecore