11 research outputs found

    Differentiation-Inducing Factor-1 and -2 Function also as Modulators for Dictyostelium Chemotaxis

    Get PDF
    BackgroundIn the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2) were originally identified as the factors (chlorinated alkylphenones) that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions.Methodology/Principal FindingsTo further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase) and a decrease in the intracellular cGMP concentration ([cGMP]i). DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase) and an increase in [cGMP]i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part.Conclusions/SignificanceOur findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules) for chemotaxis having differentiation-inducing activity

    The Putative bZIP Transcripton Factor BzpN Slows Proliferation and Functions in the Regulation of Cell Density by Autocrine Signals in Dictyostelium

    Get PDF
    The secreted proteins AprA and CfaD function as autocrine signals that inhibit cell proliferation in Dictyostelium discoideum, thereby regulating cell numbers by a negative feedback mechanism. We report here that the putative basic leucine zipper transcription factor BzpN plays a role in the inhibition of proliferation by AprA and CfaD. Cells lacking BzpN proliferate more rapidly than wild-type cells but do not reach a higher stationary density. Recombinant AprA inhibits wild-type cell proliferation but does not inhibit the proliferation of cells lacking BzpN. Recombinant CfaD also inhibits wild-type cell proliferation, but promotes the proliferation of cells lacking BzpN. Overexpression of BzpN results in a reduced cell density at stationary phase, and this phenotype requires AprA, CfaD, and the kinase QkgA. Conditioned media from high-density cells stops the proliferation of wild-type but not bzpN− cells and induces a nuclear localization of a BzpN-GFP fusion protein, though this localization does not require AprA or CfaD. Together, the data suggest that BzpN is necessary for some but not all of the effects of AprA and CfaD, and that BzpN may function downstream of AprA and CfaD in a signal transduction pathway that inhibits proliferation

    Autophagic or necrotic cell death triggered by distinct motifs of the differentiation factor DIF-1.

    No full text
    International audienceAutophagic or necrotic cell death (ACD and NCD, respectively), studied in the model organism Dictyostelium which offers unique advantages, require triggering by the same differentiation-inducing factor DIF-1. To initiate these two types of cell death, does DIF-1 act through only one or through two distinct recognition structures? Such distinct structures may recognize distinct motifs of DIF-1. To test this albeit indirectly, DIF-1 was modified at one or two of several positions, and the corresponding derivatives were tested for their abilities to induce ACD or NCD. The results strongly indicated that distinct biochemical motifs of DIF-1 were required to trigger ACD or NCD, and that these motifs were separately recognized at the onset of ACD or NCD. In addition, both ACD and NCD were induced more efficiently by DIF-1 than by either its precursors or its immediate catabolite. These results showed an unexpected relation between a differentiation factor, the cellular structures that recognize it, the cell death types it can trigger and the metabolic state of the cell. The latter seems to guide the choice of the signaling pathway to cell death, which in turn imposes the cell death type and the recognition pattern of the differentiation factor

    A necrotic cell death model in a protist.

    No full text
    While necrotic cell death is attracting considerable interest, its molecular bases are still poorly understood. Investigations in simple biological models, taken for instance outside the animal kingdom, may benefit from less interference from other cell death mechanisms and from better experimental accessibility, while providing phylogenetic information. Can necrotic cell death occur outside the animal kingdom? In the protist Dictyostelium, developmental stimuli induced in an autophagy mutant a stereotyped sequence of events characteristic of necrotic cell death. This sequence included swift mitochondrial uncoupling with mitochondrial 2',7'-dichlorofluorescein diacetate fluorescence, ATP depletion and increased oxygen consumption. This was followed by perinuclear clustering of dilated mitochondria. Rapid plasma membrane rupture then occurred, which was evidenced by time-lapse videos and quantified by FACS. Of additional interest, developmental stimuli and classical mitochondrial uncouplers triggered a similar sequence of events, and exogenous glucose delayed plasma membrane rupture in a nonglycolytic manner. The occurrence of necrotic cell death in the protist Dictyostelium (1) provides a very favorable model for further study of this type of cell death, and (2) strongly suggests that the mechanism underlying necrotic cell death was present in an ancestor common to the Amoebozoa protists and to animals and has been conserved in evolution

    The <i>Dictyostelium</i> prestalk inducer differentiation inducing factor-1 (DIF-1) triggers unexpectedly complex global phosphorylation changes

    Get PDF
    Differentiation-inducing factor-1 (DIF-1) is a polyketide that induces Dictyostelium amoebae to differentiate as prestalk cells. We performed a global quantitative screen for phosphorylation changes that occur within the first minutes after addition of DIF-1, using a triple-label SILAC approach. This revealed a new world of DIF-1-controlled signaling, with changes in components of the MAPK and protein kinase B signaling pathways, components of the actinomyosin cytoskeletal signaling networks, and a broad range of small GTPases and their regulators. The results also provide evidence that the Ca(2+)/calmodulin-dependent phosphatase calcineurin plays a role in DIF-1 signaling to the DimB prestalk transcription factor. At the global level, DIF-1 causes a major shift in the phosphorylation/dephosphorylation equilibrium toward net dephosphorylation. Of interest, many of the sites that are dephosphorylated in response to DIF-1 are phosphorylated in response to extracellular cAMP signaling. This accords with studies that suggest an antagonism between the two inducers and also with the rapid dephosphorylation of the cAMP receptor that we observe in response to DIF-1 and with the known inhibitory effect of DIF-1 on chemotaxis to cAMP. All MS data are available via ProteomeXchange with identifier PXD001555
    corecore