7 research outputs found

    Rare-earth solid-state qubits

    Get PDF
    Quantum bits (qubits) are the basic building blocks of any quantum computer. Superconducting qubits have been created with a 'top-down' approach that integrates superconducting devices into macroscopic electrical circuits [1-3], whereas electron-spin qubits have been demonstrated in quantum dots [4-6]. The phase coherence time (Tau2) and the single qubit figure of merit (QM) of superconducting and electron-spin qubits are similar -- Tau2 ~ microseconds and QM ~10-1000 below 100mK -- and it should be possible to scale-up these systems, which is essential for the development of any useful quantum computer. Bottom-up approaches based on dilute ensembles of spins have achieved much larger values of tau2 (up to tens of ms) [7, 8], but these systems cannot be scaled up, although some proposals for qubits based on 2D nanostructures should be scalable [9-11]. Here we report that a new family of spin qubits based on rare-earth ions demonstrates values of Tau2 (~ 50microseconds) and QM (~1400) at 2.5 K, which suggests that rare-earth qubits may, in principle, be suitable for scalable quantum information processing at 4He temperatures

    Decoherence in Crystals of Quantum Molecular Magnets

    Full text link
    Decoherence in Nature has become one of the most pressing problems in physics. Many applications, including quantum information processing, depend on understanding it; and fundamental theories going beyond quantum mechanics have been suggested [1-3], where the breakdown of quantum theory appears as an 'intrinsic decoherence', mimicking environmental decoherence [4]. Such theories cannot be tested until we have a handle on ordinary environmental decoherence processes. Here we show that the theory for insulating electronic spin systems can make accurate predictions for environmental decoherence in molecular-based quantum magnets [5]. Experimental understanding of decoherence in molecular magnets has been limited by short decoherence times, which make coherent spin manipulation extremely difficult [6-9]. Here we reduce the decoherence by applying a strong magnetic field. The theory predicts the contributions to the decoherence from phonons, nuclear spins, and intermolecular dipolar interactions, for a single crystal of the Fe8 molecular magnet. In experiments we find that the decoherence time varies strongly as a function of temperature and magnetic field. The theoretical predictions are fully verified experimentally - there are no other visible decoherence sources. Our investigation suggests that the decoherence time is ultimately limited by nuclear spins, and can be extended up to about 500 microseconds, by optimizing the temperature, magnetic field, and nuclear isotopic concentrations.Comment: Submitted version including 11 pages, 3 figures and online supporting materials. Appeared on Nature Advance Online Publication (AOP) on July 20th, 2011. (http://www.nature.com/nature/journal/vaop/ncurrent/full/nature10314.html

    Quantum oscillations in a molecular magnet

    No full text
    Bertaina S, Gambarelli S, Mitra T, Tsukerblat B, Müller A, Barbara B. Quantum oscillations in a molecular magnet. NATURE. 2008;453(7192):203-206.The term 'molecular magnet' generally refers to a molecular entity containing several magnetic ions whose coupled spins generate a collective spin, S ( ref. 1). Such complex multi- spin systems provide attractive targets for the study of quantum effects at the mesoscopic scale. In these molecules, the large energy barriers between collective spin states can be crossed by thermal activation or quantum tunnelling, depending on the temperature or an applied magnetic field(2-4). There is the hope that these mesoscopic spin states can be harnessed for the realization of quantum bits 'qubits', the basic building blocks of a quantum computer - based on molecular magnets(5-8). But strong decoherence(9) must be overcome if the envisaged applications are to become practical. Here we report the observation and analysis of Rabi oscillations ( quantum oscillations resulting from the coherent absorption and emission of photons driven by an electromagnetic wave(10)) of a molecular magnet in a hybrid system, in which discrete and well-separated magnetic V-15(IV) clusters are embedded in a self- organized non- magnetic environment. Each cluster contains 15 antiferromagnetically coupled S = 1/ 2 spins, leading to an S = 1/ 2 collective ground state(11-13). When this system is placed into a resonant cavity, the microwave field induces oscillatory transitions between the ground and excited collective spin states, indicative of long-lived quantum coherence. The present observation of quantum oscillations suggests that low- dimension self- organized qubit networks having coherence times of the order of 100 mu s ( at liquid helium temperatures) are a realistic prospect

    Monte Carlo Simulation

    No full text
    corecore