5 research outputs found

    The Euratom Safeguards On-site Laboratories at the Reprocessing Plants of La Hague and Sellafield

    Get PDF
    In the European Union, nuclear material is reprocessed from irradiated power reactor fuel at two sites ¿ La Hague in France and Sellafield in the United Kingdom. These are the largest nuclear sites within the EU, processing many hundreds of tons of nuclear material in a year. Under the Euratom Treaty, the European Commission has the duty to assure that the nuclear material is only used for declared purposes. The Directorate General for Energy (DG ENER), acting for the Commission, assures itself that the terms of Article 77 of Chapter VII of the Treaty have been complied with. In contrast to the Non Proliferation Treaty, the Euratom Treaty requires to safeguard all civil nuclear material in all EU member states ¿ including the nuclear weapons states. The considerable amount of fissile material separated per year (several tonnes) calls for a stringent system of safeguards measures. The aim of safeguards is to deter diversion of nuclear material from peaceful use by maximizing the chance of early detection. At a broader level, it provides assurance to the public that the European nuclear industry, the EU member states and the European Union honour their legal duties under the Euratom Treaty and their commitments to the Non-Proliferation Treaty. Efficient and effective safeguards measures are essential for the public acceptance of nuclear activities.JRC.E.7-Nuclear Safeguards and Forensic

    Nuclear Safeguards by Lab on the Microchip: Spectrophotometric Tests of Radioactive Solutions on Microsample (thesis)

    No full text
    Abstract not availableJRC.G-Institute for the Protection and the Security of the Citizen (Ispra

    Feasibility Study of a Microsystem to Analyse Radioactive Solutions

    Get PDF
    The application of micro-electromechanical systems (MEMS) to evaluate the chemical properties of radioactive solutions has been investigated with the example of a liquid sample taken from reprocessing plant vessels. For radiochemical solutions the application of a microvial instead of a millivial bears more advantages than for other chemical solutions because of the strongly simplified sample preparation and significantly reduced dose uptake. The scaling down of the liquid sample might also cause negative implications on the radiochemical analyses with regard to accuracy and representativeness. All the consequences on replacing a liquid sample of several ml by one of less than one ml are investigated. This paper reports in particular on a first feasibility study of the replacement of a millivial by a microvial for the analysis of spent fuel solutions in a reprocessing plant for the purpose of nuclear safeguards. Implementation of MEMS in this area results in a reduction in dose that is almost proportional with the reduction in size. This brings about a simplification in sample preparation and a significant reduction in dose uptake for the analyst with many advantages over conventional methods. The MEMS designed for analyzing a spent fuel solution consists of three microchannels: one channel for the sample, one for a reference solution and one is the blank. The concentration of the solution is determined by the photospectra of the light transmitted along the channel axis and absorbed at nuclide-specific wavelengths. Absorptiometry experiments with a micro-volume demonstrated the validity of the Beer-Lambert law and derived the limits in precision as a function of the concentration. A photospectrometric database for the reference solution of aqueous solutions of nitric acid with the Neodymium surrogate was setup. Electrophoretic forces fill the subject microchannel with the solution, which will release heat due to radioactive decay. The flow and heat characteristics of microchannels have been observed to deviate from conventional and well established theory. These differences have been evaluated and the reasons examined. The microscopic effect of the electrical double layer (EDL) is focused on. These investigations on the validity of the traditional macroscopic models allowed application of classical theories within a well defined validity range and the adaptation of these theories to suit microscopic models. It was concluded that the EDL was the most influential on the flow. With thermodynamic simulations the stresses were evaluated. Conditions on the released heat were derived that guarantee no deformation of the chip and no temperature shift for the absorptiometry measurements.JRC.G.8-Nuclear safeguard

    In-field Timely and Accurate Measurements - Fundamental to Minimising Safeguards Issues in Reprocessing Facilities

    No full text
    The two large reprocessing plants in Europe, located in Sellafield (UK) and La Hague (F) have a throughput of 800 t and 1600 t of spent fuel per year. In order to meet the safeguards criteria of quantity, timeliness and probability (QTP), these facilities deserve particular attention and appropriate safeguards measures have to be implemented. At either plant Euratom installed an on-site laboratory where the verification measurements are performed with minimal time delays and at highest possible accuracy.JRC.E-Institute for Transuranium Elements (Karlsruhe

    Polyglutamine Atrophin provokes neurodegeneration in Drosophila by repressing fat

    No full text
    Dentatorubral-pallidoluysian Atrophy is a neurodegenerative disease caused by the expansion of a CAG stretch in the atrophin-1 gene. The findings of this study report that Atrophin promotes neurodegeneration in Drosophila by repressing the expression of the tumour suppressor fat and reveal a neuroprotective role of the conserved Fat/Hippo pathway
    corecore