48 research outputs found

    Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Pyrus </it>belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of <it>Pyrus </it>has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of <it>LEAFY </it>and the alcohol dehydrogenase gene (<it>Adh</it>) were selected to investigate their molecular evolution and phylogenetic utility.</p> <p>Results</p> <p>DNA sequence analyses revealed a complex ortholog and paralog structure of <it>Adh </it>genes in <it>Pyrus </it>and <it>Malus</it>, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some <it>Adh </it>homologs are putatively nonfunctional. A partial region of <it>Adh1 </it>was sequenced for 18 <it>Pyrus </it>species and three subparalogs representing <it>Adh1-1 </it>were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of <it>LEAFY</it>, multiple inparalogs were discovered for both <it>LFY1int2 </it>and <it>LFY2int2</it>. <it>LFY1int2 </it>is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. <it>LFY2int2-N</it>, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of <it>Pyrus </it>using <it>LFY2int2-N</it>.</p> <p>Conclusions</p> <p>Our study represents the first phylogenetic analyses based on LCNGs in <it>Pyrus</it>. Ancient and recent duplications lead to a complex structure of <it>Adh </it>outparalogs and inparalogs in <it>Pyrus </it>and <it>Malus</it>, resulting in neofunctionalization, nonfunctionalization and possible subfunctionalization. Among all investigated orthologs, <it>LFY2int2-N </it>is the best nuclear marker for phylogenetic reconstruction of <it>Pyrus </it>due to suitable sequence divergence and the absence of lineage sorting.</p

    Genetic variation in Arabidopsis suecica and its parental species A. arenosa and A. thaliana

    No full text
    Random amplified polymorphic DNA (RAPD) markers were used to estimate the level of genetic variation in Swedish accessions of the allopolyploid Arabidopsis suecica and its parental species A. thaliana and A. arenosa. The results showed clear differences among the three species with respect to the level of variation. A. arenosa was highly variable, A. thaliana showed a moderate level of variation whereas A. suecica was much less variable than the two other species. An extended analysis covering 19 Swedish populations of A. suecica corroborated the low level of variation in this species, yet 16 unique phenotypes were observed. No isolation by distance was observed. When the genetic variation was partitioned among and within populations of A. suecica, the results showed that the majority of the variation (81%) occurred among populations. This result is interpreted as a strong indication that A. suecica is autogamous in nature

    The extent of linkage disequilibrium in Arabidopsis thaliana

    No full text
    Linkage disequilibrium (LD), the nonrandom occurrence of alleles in haplotypes, has long been of interest to population geneticists. Recently, the rapidly increasing availability of genomic polymorphism data has fueled interest in LD as a tool for fine-scale mapping, in particular for human disease loci(1). The chromosomal extent of LD is crucial in this context, because it determines how dense a map must be for associations to be detected and, conversely, limits how finely loci may be mapped(2). Arabidopsis thaliana is expected to harbor unusually extensive LD because of its high degree of selfing(3). Several polymorphism studies have found very strong LD within individual loci, but also evidence of some recombination(4-6). Here we investigate the pattern of LD on a genomic scale and show that in global samples, LD decays within approximately 1 cM, or 250 kb. We also show that LD in local populations may be much stronger than that of global populations, presumably as a result of founder events. The combination of a relatively high level of polymorphism and extensive haplotype structure bodes well for developing a genome-wide LD map in A. thaliana
    corecore