374 research outputs found

    P120-Catenin Isoforms 1 and 3 Regulate Proliferation and Cell Cycle of Lung Cancer Cells via Ξ²-Catenin and Kaiso Respectively

    Get PDF
    <div><h3>Background</h3><p>The different mechanisms involved in p120-catenin (p120ctn) isoforms' 1/3 regulation of cell cycle progression are still not elucidated to date.</p> <h3>Methods and Findings</h3><p>We found that both cyclin D1 and cyclin E could be effectively restored by restitution of p120ctn-1A or p120ctn-3A in p120ctn depleted lung cancer cells. When the expression of cyclin D1 was blocked by co-transfection with siRNA-cyclin D1 in p120ctn depleted cells restoring p120ctn-1A or 3A, the expression of cyclin E was slightly decreased, not increased, implying that p120ctn isoforms 1 and 3 cannot up-regulate cyclin E directly but may do so through up-regulation of cyclin D1. Interestingly, overexpression of p120ctn-1A increased Ξ²-catenin and cyclin D1 expression, while co-transfection with siRNA targeting Ξ²-catenin abolishes the effect of p120ctn-1A on up-regulation of cyclin D1, suggesting a role of Ξ²-catenin in mediating p120ctn-1A's regulatory function on cyclin D1 expression. On the other hand, overexpression of p120ctn isoform 3A reduced nuclear Kaiso localization, thus decreasing the binding of Kaiso to KBS on the cyclin D1 promoter and thereby enhancing the expression of cyclin D1 gene by relieving the repressor effect of Kaiso. Because overexpressing NLS-p120ctn-3A (p120ctn-3A nuclear target localization plasmids) or inhibiting nuclear export of p120ctn-3 by Leptomycin B (LMB) caused translocation of Kaiso to the nucleus, it is plausible that the nuclear export of Kaiso is p120ctn-3-dependent.</p> <h3>Conclusions</h3><p>Our results suggest that p120ctn isoforms 1 and 3 up-regulate cyclin D1, and thereby cyclin E, resulting in the promotion of cell proliferation and cell cycle progression in lung cancer cells probably via different protein mediators, namely, Ξ²-catenin for isoform 1 and Kaiso, a negative transcriptional factor of cyclin D1, for isoform 3.</p> </div

    A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments

    Get PDF
    Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum

    Optical identification of electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure

    Get PDF
    We have studied the electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure, i.e., with an In0.15Ga0.85As quantum well (QW) as capping layer above InAs quantum dots (QDs), via temperature-dependent photoluminescence, photo-modulated reflectance, and rapid thermal annealing (RTA) treatments. It is shown that the carrier transfer via wetting layer (WL) is impeded according to the results of temperature dependent peak energy and line width variation of both the ground states (GS) and excited states (ES) of QDs. The quenching of integrated intensity is ascribed to the thermal escape of electron from the dots to the complex In0.15Ga0.85As QW + InAs WL structure. Additionally, as the RTA temperature increases, the peak of PL blue shifts and the full width at half maximum shrinks. Especially, the intensity ratio of GS to ES reaches the maximum when the energy difference approaches the energy of one or two LO phonon(s) of InAs bulk material, which could be explained by phonon-enhanced inter-sublevels carrier relaxation in such asymmetric dot-in-well structure

    IMMUNOGENICITY AND IMPACT ON NASOPHARYNGEAL CARRIAGE OF A SINGLE DOSE OF PCV10 GIVEN TO VIETNAMESE CHILDREN AT 18 MONTHS OF AGE.

    Get PDF
    Background: This study investigated the immunogenicity and impact on nasopharyngeal carriage of a single dose of PCV10 given to 18-month-old Vietnamese children. This information is important for countries considering catch-up vaccination during PCV introduction and in the context of vaccination during humanitarian crises. Methods: Two groups of PCV-naΓ―ve children within the Vietnam Pneumococcal Project received PCV10 (n=197) or no PCV (unvaccinated; n=199) at 18 months of age. Blood samples were collected at 18, 19, and 24 months of age, and nasopharyngeal swabs at 18 and 24 months of age. Immunogenicity was assessed by measuring serotype-specific IgG, opsonophagocytosis (OPA) and memory B cells (Bmem). Pneumococci were detected and quantified using real-time PCR and serotyped by microarray. Findings: At 19 months of age, IgG and OPA responses were higher in the PCV10 group compared with the unvaccinated group for all PCV10 serotypes and cross-reactive serotypes 6A and 19A. This was sustained out to 24 months of age, at which point PCV10-type carriage was 60% lower in the PCV10 group than the unvaccinated group. Bmem levels increased between 18 and 24 months of age in the vaccinated group. Interpretation: We demonstrate strong protective immune responses in vaccinees following a single dose of PCV10 at 18 months of age, and a potential impact on herd protection through a substantial reduction in vaccine-type carriage. A single dose of PCV10 in the second year of life could be considered as part of catch-up campaigns or in humanitarian crises to protect children at high-risk of pneumococcal disease

    An In Vitro Model of the Glomerular Capillary Wall Using Electrospun Collagen Nanofibres in a Bioartificial Composite Basement Membrane

    Get PDF
    The filtering unit of the kidney, the glomerulus, contains capillaries whose walls function as a biological sieve, the glomerular filtration barrier. This comprises layers of two specialised cells, glomerular endothelial cells (GEnC) and podocytes, separated by a basement membrane. Glomerular filtration barrier function, and dysfunction in disease, remains incompletely understood, partly due to difficulties in studying the relevant cell types in vitro. We have addressed this by generation of unique conditionally immortalised human GEnC and podocytes. However, because the glomerular filtration barrier functions as a whole, it is necessary to develop three dimensional co-culture models to maximise the benefit of the availability of these cells. Here we have developed the first two tri-layer models of the glomerular capillary wall. The first is based on tissue culture inserts and provides evidence of cell-cell interaction via soluble mediators. In the second model the synthetic support of the tissue culture insert is replaced with a novel composite bioartificial membrane. This consists of a nanofibre membrane containing collagen I, electrospun directly onto a micro-photoelectroformed fine nickel supporting mesh. GEnC and podocytes grew in monolayers on either side of the insert support or the novel membrane to form a tri-layer model recapitulating the human glomerular capillary in vitro. These models will advance the study of both the physiology of normal glomerular filtration and of its disruption in glomerular disease

    The Type III Effectors NleE and NleB from Enteropathogenic E. coli and OspZ from Shigella Block Nuclear Translocation of NF-ΞΊB p65

    Get PDF
    Many bacterial pathogens utilize a type III secretion system to deliver multiple effector proteins into host cells. Here we found that the type III effectors, NleE from enteropathogenic E. coli (EPEC) and OspZ from Shigella, blocked translocation of the p65 subunit of the transcription factor, NF-ΞΊB, to the host cell nucleus. NF-ΞΊB inhibition by NleE was associated with decreased IL-8 expression in EPEC-infected intestinal epithelial cells. Ectopically expressed NleE also blocked nuclear translocation of p65 and c-Rel, but not p50 or STAT1/2. NleE homologues from other attaching and effacing pathogens as well OspZ from Shigella flexneri 6 and Shigella boydii, also inhibited NF-ΞΊB activation and p65 nuclear import; however, a truncated form of OspZ from S. flexneri 2a that carries a 36 amino acid deletion at the C-terminus had no inhibitory activity. We determined that the C-termini of NleE and full length OspZ were functionally interchangeable and identified a six amino acid motif, IDSY(M/I)K, that was important for both NleE- and OspZ-mediated inhibition of NF-ΞΊB activity. We also established that NleB, encoded directly upstream from NleE, suppressed NF-ΞΊB activation. Whereas NleE inhibited both TNFΞ± and IL-1Ξ² stimulated p65 nuclear translocation and IΞΊB degradation, NleB inhibited the TNFΞ± pathway only. Neither NleE nor NleB inhibited AP-1 activation, suggesting that the modulatory activity of the effectors was specific for NF-ΞΊB signaling. Overall our data show that EPEC and Shigella have evolved similar T3SS-dependent means to manipulate host inflammatory pathways by interfering with the activation of selected host transcriptional regulators

    The Association between Household Socioeconomic Position and Prevalent Tuberculosis in Zambia: A Case-Control Study

    Get PDF
    BACKGROUND: Although historically tuberculosis (TB) has been associated with poverty, few analytical studies from developing countries have tried to: 1. assess the relative impact of poverty on TB after the emergence of HIV; 2. explore the causal mechanism underlying this association; and 3. estimate how many cases of TB could be prevented by improving household socioeconomic position (SEP). METHODS AND FINDINGS: We undertook a case-control study nested within a population-based TB and HIV prevalence survey conducted in 2005-2006 in two Zambian communities. Cases were defined as persons (15+ years of age) culture positive for M. tuberculosis. Controls were randomly drawn from the TB-free participants enrolled in the prevalence survey. We developed a composite index of household SEP combining variables accounting for four different domains of household SEP. The analysis of the mediation pathway between household SEP and TB was driven by a pre-defined conceptual framework. Adjusted Population Attributable Fractions (aPAF) were estimated. Prevalent TB was significantly associated with lower household SEP [aORβ€Š=β€Š6.2, 95%CI: 2.0-19.2 and aORβ€Š=β€Š3.4, 95%CI: 1.8-7.6 respectively for low and medium household SEP compared to high]. Other risk factors for prevalent TB included having a diet poor in proteins [aORβ€Š=β€Š3.1, 95%CI: 1.1-8.7], being HIV positive [aORβ€Š=β€Š3.1, 95%CI: 1.7-5.8], not BCG vaccinated [aORβ€Š=β€Š7.7, 95%CI: 2.8-20.8], and having a history of migration [aORβ€Š=β€Š5.2, 95%CI: 2.7-10.2]. These associations were not confounded by household SEP. The association between household SEP and TB appeared to be mediated by inadequate consumption of protein food. Approximately the same proportion of cases could be attributed to this variable and HIV infection (aPAFβ€Š=β€Š42% and 36%, respectively). CONCLUSIONS: While the fight against HIV remains central for TB control, interventions addressing low household SEP and, especially food availability, may contribute to strengthen our control efforts
    • …
    corecore