24 research outputs found

    Experimental and theoretical investigation of ligand effects on the synthesis of ZnO nanoparticles

    Get PDF
    ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence

    “Green” Aqueous Synthesis and Advanced Spectral Characterization of Size-Selected Cu2ZnSnS4 Nanocrystal Inks

    Get PDF
    Structure, composition, and optical properties of colloidal mercaptoacetate-stabilized Cu2ZnSnS4 (CZTS) nanocrystal inks produced by a “green” method directly in aqueous solutions were characterized. A size-selective precipitation procedure using 2-propanol as a non-solvent allows separating a series of fractions of CZTS nanocrystals with an average size (bandgap) varying from 3 nm (1.72 eV) to 2 nm (2.04 eV). The size-selected CZTS nanocrystals revealed also phonon confinement, with the main phonon mode frequency varying by about 4 cm−1 between 2 nm and 3 nm NCs

    Photovoltage method for the research of CdS and ZnO nanoparticles and hybrid MEH-PPV/nanoparticle structures

    No full text
    The paper demonstrates an application of photovoltaic effect in the research of nanomaterials and hybrid structures of polymers with nanoparticles. Photovoltage (PV) measurement was utilized for estimating the size of CdS and ZnO nanoparticles and diagnostics of hybrid structures with poly[2-methoxy-5-(2- ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), namely nano-CdS/MEH-PPV and nano-ZnO/MEH-PPV. CdS average nanocrystal diameters 4.0 and 4.8 nm were calculated from the onset values of energies corresponding to the steep increase in the PV signals using the effective mass model. The range of size of ZnO particles was from about 5 up to 50 nm. Nanoparticle distribution obtained by transmission electron microscopy (TEM) measurements shows that the calculated diameters agree fairly well with the size of nanoparticles with the highest occurrence. The PV spectrum represents a sum of the spectra corresponding to the various nanoparticle sizes. The distribution of the nanoparticles was also obtained by a simple mathematical treatment of the PV spectra, and agreement with the results of TEM was found. PV and TEM measurements were performed on commercial CdS and ZnO nanoparticles and on CdS nanoparticles prepared in our laboratory. We employ triethanolamine as a protective agent to cover the surface of CdS nanoparticles. Nano-CdS/MEH-PPV and nano-ZnO/MeH-PPV hybrid structures were prepared, and influence of the particles on charge transport was shown by the PV spectra measurements. © 2014 Springer Science+Business Media
    corecore