263 research outputs found

    PREVALENCE OF DIABETIC RETINOPATHY IN TYPE 2 DIABETES MELLITUS: AN OBSERVATIONAL STUDY IN SOUTHERN INDIA

    Get PDF
      Objectives: In India, 69.1 million are diabetics as of 2015 compared to 18 million in 1995. Pan India prevalence study in diabetics carried out at 194 centers by All India Ophthalmological Society reported the prevalence of diabetic retinopathy (DR) among diabetics as 21.8%. DR is of two types, non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR). The severity of NPDR depends on microaneurysms, hemorrhages, cotton wool spots, and beading of veins and can progress to PDR. Inherit characteristic of PDR is neovascularization. The aim of this observational prevalence study is to study the prevalence of diabetic retinopathy in Type 2 diabetic patients attending diabetic clinic and to study the distribution of diabetic retinopathy with respect to age, sex, and duration of disease in a tertiary care hospital in southern India.Methods: This is a retrospective observational study. Age above 20 years and patients diagnosed with Type 2 diabetes mellitus (DM) and examined by the ophthalmologist were included and others excluded. Data documented were analyzed using statistical software SPSS version 16.Results: About 52.07% of patients with Type 2 DM for more than 10 years had diabetic retinopathy and 13.07 % of patients with Type 2 DM for more than 5 years have diabetic retinopathy.Conclusion: India being the diabetic capital of the world and DR being the most common cause for visual impairment and blindness and it becomes empirical to assess the factors for its rising prevalence, which will significantly contribute in reducing the progression of DR

    Paired and clustered quantum Hall states

    Full text link
    We briefly summarize properties of quantum Hall states with a pairing or clustering property. Their study employs a fundamental connection with parafermionic Conformal Field Theories. We report on closed form expressions for the many-body wave functions and on multiplicities of the fundamental quasi-hole excitations.Comment: 13 pages, Contribution to the proceedings of the NATO Advanced Research Workshop "Statistical Field Theories" Como (Italy), June 18-23 200

    Noninvasive Monitoring of Placenta-Specific Transgene Expression by Bioluminescence Imaging

    Get PDF
    BACKGROUND: Placental dysfunction underlies numerous complications of pregnancy. A major obstacle to understanding the roles of potential mediators of placental pathology has been the absence of suitable methods for tissue-specific gene manipulation and sensitive assays for studying gene functions in the placentas of intact animals. We describe a sensitive and noninvasive method of repetitively tracking placenta-specific gene expression throughout pregnancy using lentivirus-mediated transduction of optical reporter genes in mouse blastocysts. METHODOLOGY/PRINCIPAL FINDINGS: Zona-free blastocysts were incubated with lentivirus expressing firefly luciferase (Fluc) and Tomato fluorescent fusion protein for trophectoderm-specific infection and transplanted into day 3 pseudopregnant recipients (GD3). Animals were examined for Fluc expression by live bioluminescence imaging (BLI) at different points during pregnancy, and the placentas were examined for tomato expression in different cell types on GD18. In another set of experiments, blastocysts with maximum photon fluxes in the range of 2.0E+4 to 6.0E+4 p/s/cm(2)/sr were transferred. Fluc expression was detectable in all surrogate dams by day 5 of pregnancy by live imaging, and the signal increased dramatically thereafter each day until GD12, reaching a peak at GD16 and maintaining that level through GD18. All of the placentas, but none of the fetuses, analyzed on GD18 by BLI showed different degrees of Fluc expression. However, only placentas of dams transferred with selected blastocysts showed uniform photon distribution with no significant variability of photon intensity among placentas of the same litter. Tomato expression in the placentas was limited to only trophoblast cell lineages. CONCLUSIONS/SIGNIFICANCE: These results, for the first time, demonstrate the feasibility of selecting lentivirally-transduced blastocysts for uniform gene expression in all placentas of the same litter and early detection and quantitative analysis of gene expression throughout pregnancy by live BLI. This method may be useful for a wide range of applications involving trophoblast-specific gene manipulations in utero

    The rph1 Gene Is a Common Contributor to the Evolution of Phosphine Resistance in Independent Field Isolates of Rhyzopertha Dominica

    Get PDF
    Phosphine is the only economically viable fumigant for routine control of insect pests of stored food products, but its continued use is now threatened by the world-wide emergence of high-level resistance in key pest species. Phosphine has a unique mode of action relative to well-characterised contact pesticides. Similarly, the selective pressures that lead to resistance against field sprays differ dramatically from those encountered during fumigation. The consequences of these differences have not been investigated adequately. We determine the genetic basis of phosphine resistance in Rhyzopertha dominica strains collected from New South Wales and South Australia and compare this with resistance in a previously characterised strain from Queensland. The resistance levels range from 225 and 100 times the baseline response of a sensitive reference strain. Moreover, molecular and phenotypic data indicate that high-level resistance was derived independently in each of the three widely separated geographical regions. Despite the independent origins, resistance was due to two interacting genes in each instance. Furthermore, complementation analysis reveals that all three strains contain an incompletely recessive resistance allele of the autosomal rph1 resistance gene. This is particularly noteworthy as a resistance allele at rph1 was previously proposed to be a necessary first step in the evolution of high-level resistance. Despite the capacity of phosphine to disrupt a wide range of enzymes and biological processes, it is remarkable that the initial step in the selection of resistance is so similar in isolated outbreaks

    NCAM (CD56) Expression in keratin-producing odontogenic cysts: aberrant expression in KCOT

    Get PDF
    Background: Keratin-producing odontogenic cysts (KPOCs) are a group of cystic lesions that are often aggressive, with high rates of recurrence and multifocality. KPOCs included orthokeratinised odontogenic cyst (OOC) and parakeratotic odontogenic cysts, which are now considered true tumours denominated keratocystic odontogenic tumours (KCOTs). GLUT1 is a protein transporter that is involved in the active uptake of glucose across cell membranes and that is overexpressed in tumours in close correlation with the proliferation rate and positron emission tomography (PET) imaging results. Methods: A series of 58 keratin-producing odontogenic cysts was evaluated histologically and immunohistochemically in terms of GLUT1 expression. Different data were correlated using the beta regression model in relation to histological type and immunohistochemical expression of GLUT1, which was quantified using two different morphological methods. Results: KPOC cases comprised 12 OOCs and 46 KCOTs, the latter corresponding to 6 syndromic and 40 sporadic KCOTs. GLUT1 expression was very low in OOC cases compared with KCOT cases, with statistical significant differences when quantification was considered. Different GLUT1 localisation patterns were revealed by immunostaining, with the parabasal cells showing higher reactivity in KCOTs. However, among KCOTs cases, GLUT1 expression was unable to establish differences between syndromic and sporadic cases. Conclusions: GLUT1 expression differentiated between OOC and KCOT cases, with significantly higher expression in KCOTs, but did not differentiate between syndromic and sporadic KCOT cases. However, given the structural characteristics of KCOTs, we hypothesised that PET imaging methodology is probably not a useful diagnostic tool for KCOTs. Further studies of GLUT1 expression and PET examination in KCOT series are needed to confirm this last hypothesis. Keywords: Glucose transporter protein, Immunohistochemistry, Keratin-producing odontogenic cyst, Keratocystic odontogenic tumour, Orthokeratinised odontogenic cyst, Positron emission tomograph

    A microscopy-based screen employing multiplex genome sequencing identifies cargo-specific requirements for dynein velocity

    Get PDF
    The timely delivery of membranous organelles and macromolecules to specific locations within the majority of eukaryotic cells depends on microtubule-based transport. Here, we describe a screening method to identify mutations that have a critical effect on intracellular transport and its regulation using mutagenesis, multicolor-fluorescence microscopy, and multiplex genome sequencing. This screen exploits the filamentous fungus Aspergillus nidulans, which has many of the advantages of yeast molecular genetics, but uses long-range microtubule-based transport in a manner more similar to metazoan cells. Using this method, we identified 7 mutants that represent novel alleles of components of the intracellular transport machinery: specifically, kinesin-1, cytoplasmic dynein, and the dynein regulators Lis1 and dynactin. The two dynein mutations identified in our screen map to dynein's AAA+ catalytic core. Single-molecule studies reveal that both mutations reduce dynein's velocity in vitro. In vivo these mutants severely impair the distribution and velocity of endosomes, a known dynein cargo. In contrast, another dynein cargo, the nucleus, is positioned normally in these mutants. These results reveal that different dynein functions have distinct velocity requirements

    Compartmentalized Culture of Perivascular Stroma and Endothelial Cells in a Microfluidic Model of the Human Endometrium

    Get PDF
    The endometrium is the inner lining of the uterus. Following specific cyclic hormonal stimulation, endometrial stromal fibroblasts (stroma) and vascular endothelial cells exhibit morphological and biochemical changes to support embryo implantation and regulate vascular function, respectively. Herein, we integrated a resin-based porous membrane in a dual chamber microfluidic device in polydimethylsiloxane that allows long term in vitro co-culture of human endometrial stromal and endothelial cells. This transparent, 2-m porous membrane separates the two chambers, allows for the diffusion of small molecules and enables high resolution bright field and fluorescent imaging. Within our primary human co-culture model of stromal and endothelial cells, we simulated the temporal hormone changes occurring during an idealized 28-day menstrual cycle. We observed the successful differentiation of stroma into functional decidual cells, determined by morphology as well as biochemically as measured by increased production of prolactin. By controlling the microfluidic properties of the device, we additionally found that shear stress forces promoted cytoskeleton alignment and tight junction formation in the endothelial layer. Finally, we demonstrated that the endometrial perivascular stroma model was sustainable for up to 4 weeks, remained sensitive to steroids and is suitable for quantitative biochemical analysis. Future utilization of this device will allow the direct evaluation of paracrine and endocrine crosstalk between these two cell types as well as studies of immunological events associated with normal versus disease-related endometrial microenvironments
    • …
    corecore