2,137 research outputs found

    Event-Based Modeling with High-Dimensional Imaging Biomarkers for Estimating Spatial Progression of Dementia

    Full text link
    Event-based models (EBM) are a class of disease progression models that can be used to estimate temporal ordering of neuropathological changes from cross-sectional data. Current EBMs only handle scalar biomarkers, such as regional volumes, as inputs. However, regional aggregates are a crude summary of the underlying high-resolution images, potentially limiting the accuracy of EBM. Therefore, we propose a novel method that exploits high-dimensional voxel-wise imaging biomarkers: n-dimensional discriminative EBM (nDEBM). nDEBM is based on an insight that mixture modeling, which is a key element of conventional EBMs, can be replaced by a more scalable semi-supervised support vector machine (SVM) approach. This SVM is used to estimate the degree of abnormality of each region which is then used to obtain subject-specific disease progression patterns. These patterns are in turn used for estimating the mean ordering by fitting a generalized Mallows model. In order to validate the biomarker ordering obtained using nDEBM, we also present a framework for Simulation of Imaging Biomarkers' Temporal Evolution (SImBioTE) that mimics neurodegeneration in brain regions. SImBioTE trains variational auto-encoders (VAE) in different brain regions independently to simulate images at varying stages of disease progression. We also validate nDEBM clinically using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). In both experiments, nDEBM using high-dimensional features gave better performance than state-of-the-art EBM methods using regional volume biomarkers. This suggests that nDEBM is a promising approach for disease progression modeling.Comment: IPMI 201

    A simulation system for biomarker evolution in neurodegenerative disease

    Get PDF
    We present a framework for simulating cross-sectional or longitudinal biomarker data sets from neurodegenerative disease cohorts that reflect the temporal evolution of the disease and population diversity. The simulation system provides a mechanism for evaluating the performance of data-driven models of disease progression, which bring together biomarker measurements from large cross-sectional (or short term longitudinal) cohorts to recover the average population-wide dynamics. We demonstrate the use of the simulation framework in two different ways. First, to evaluate the performance of the Event Based Model (EBM) for recovering biomarker abnormality orderings from cross-sectional datasets. Second, to evaluate the performance of a differential equation model (DEM) for recovering biomarker abnormality trajectories from short-term longitudinal datasets. Results highlight several important considerations when applying data-driven models to sporadic disease datasets as well as key areas for future work. The system reveals several important insights into the behaviour of each model. For example, the EBM is robust to noise on the underlying biomarker trajectory parameters, under-sampling of the underlying disease time course and outliers who follow alternative event sequences. However, the EBM is sensitive to accurate estimation of the distribution of normal and abnormal biomarker measurements. In contrast, we find that the DEM is sensitive to noise on the biomarker trajectory parameters, resulting in an over estimation of the time taken for biomarker trajectories to go from normal to abnormal. This over estimate is approximately twice as long as the actual transition time of the trajectory for the expected noise level in neurodegenerative disease datasets. This simulation framework is equally applicable to a range of other models and longitudinal analysis techniques

    pySuStaIn: A Python implementation of the Subtype and Stage Inference algorithm

    Get PDF
    Progressive disorders are highly heterogeneous. Symptom-based clinical classification of these disorders may not reflect the underlying pathobiology. Data-driven subtyping and staging of patients has the potential to disentangle the complex spatiotemporal patterns of disease progression. Tools that enable this are in high demand from clinical and treatment-development communities. Here we describe the pySuStaIn software package, a Python-based implementation of the Subtype and Stage Inference (SuStaIn) algorithm. SuStaIn unravels the complexity of heterogeneous diseases by inferring multiple disease progression patterns (subtypes) and individual severity (stages) from cross-sectional data. The primary aims of pySuStaIn are to enable widespread application and translation of SuStaIn via an accessible Python package that supports simple extension and generalization to novel modeling situations within a single, consistent architecture

    Aplastic Crisis as Primary Manifestation of Systemic Lupus Erythematosus

    Get PDF
    Aplastic crisis is an unusual feature of systemic lupus erythematosus (SLE). We report the case of a 54-year-old woman presenting with both (extravascular) Coombs-positive hemolytic anemia and laboratory findings of bone marrow hyporegeneration with concomitant severe neutropenia. A bone marrow biopsy confirmed aplastic crisis. Diagnostic work-up revealed soaring titers of autoantibodies (anti-nuclear, anti-double-stranded DNA, anti-cardiolipin-IgM, and anti-beta 2-glykoprotein-IgM antibodies), indicating a connective tissue disease as the most plausible reason for bone marrow insufficiency. As the criteria for SLE were fulfilled, we initiated an immunosuppressive therapy by steroids, which led to a rapid complete hematologic and clinical remission in our patient. In this case, we could report on one of the rare cases of SLE-induced aplastic crisis showing that this condition can be entirely reversed by immunosuppressive treatment and that SLE-induced aplastic crisis yields a good prognosis. In conclusion, in a case of aplastic crisis, physicians should be aware that SLE can be a rare cause that is accessible to specific treatment

    Ordinal SuStaIn: Subtype and Stage Inference for Clinical Scores, Visual Ratings, and Other Ordinal Data

    Get PDF
    Subtype and Stage Inference (SuStaIn) is an unsupervised learning algorithm that uniquely enables the identification of subgroups of individuals with distinct pseudo-temporal disease progression patterns from cross-sectional datasets. SuStaIn has been used to identify data-driven subgroups and perform patient stratification in neurodegenerative diseases and in lung diseases from continuous biomarker measurements predominantly obtained from imaging. However, the SuStaIn algorithm is not currently applicable to discrete ordinal data, such as visual ratings of images, neuropathological ratings, and clinical and neuropsychological test scores, restricting the applicability of SuStaIn to a narrower range of settings. Here we propose 'Ordinal SuStaIn', an ordinal version of the SuStaIn algorithm that uses a scored events model of disease progression to enable the application of SuStaIn to ordinal data. We demonstrate the validity of Ordinal SuStaIn by benchmarking the performance of the algorithm on simulated data. We further demonstrate that Ordinal SuStaIn out-performs the existing continuous version of SuStaIn (Z-score SuStaIn) on discrete scored data, providing much more accurate subtype progression patterns, better subtyping and staging of individuals, and accurate uncertainty estimates. We then apply Ordinal SuStaIn to six different sub-scales of the Clinical Dementia Rating scale (CDR) using data from the Alzheimer's disease Neuroimaging Initiative (ADNI) study to identify individuals with distinct patterns of functional decline. Using data from 819 ADNI1 participants we identified three distinct CDR subtype progression patterns, which were independently verified using data from 790 ADNI2 participants. Our results provide insight into patterns of decline in daily activities in Alzheimer's disease and a mechanism for stratifying individuals into groups with difficulties in different domains. Ordinal SuStaIn is broadly applicable across different types of ratings data, including visual ratings from imaging, neuropathological ratings and clinical or behavioural ratings data

    An image-based model of brain volume biomarker changes in Huntington's disease

    Get PDF
    Objective: Determining the sequence in which Huntington's disease biomarkers become abnormal can provide important insights into the disease progression and a quantitative tool for patient stratification. Here, we construct and present a uniquely fine-grained model of temporal progression of Huntington's disease from premanifest through to manifest stages. Methods: We employ a probabilistic event-based model to determine the sequence of appearance of atrophy in brain volumes, learned from structural MRI in the Track-HD study, as well as to estimate the uncertainty in the ordering. We use longitudinal and phenotypic data to demonstrate the utility of the patient staging system that the resulting model provides. Results: The model recovers the following order of detectable changes in brain region volumes: putamen, caudate, pallidum, insula white matter, nonventricular cerebrospinal fluid, amygdala, optic chiasm, third ventricle, posterior insula, and basal forebrain. This ordering is mostly preserved even under cross-validation of the uncertainty in the event sequence. Longitudinal analysis performed using 6 years of follow-up data from baseline confirms efficacy of the model, as subjects consistently move to later stages with time, and significant correlations are observed between the estimated stages and nonimaging phenotypic markers. Interpretation: We used a data-driven method to provide new insight into Huntington's disease progression as well as new power to stage and predict conversion. Our results highlight the potential of disease progression models, such as the event-based model, to provide new insight into Huntington's disease progression and to support fine-grained patient stratification for future precision medicine in Huntington's disease

    Understanding nanoparticle porosity via nanoimpacts and XPS: electro-oxidation of platinum nanoparticle aggregates

    Get PDF
    The porosity of platinum nanoparticle aggregates (PtNPs) is investigated electrochemically via particle-electrode impacts and by XPS. The mean charge per oxidative transient is measured from nanoimpacts; XPS shows the formation of PtO and PtO2 in relative amounts defined by the electrode potential and an average oxidation state is deduced as a function of potential. The number of platinum atoms oxidised per PtNP is calculated and compared with two models: solid and porous spheres, within which there are two cases: full and surface oxidation. This allows insight into extent to which the internal surface of the aggregate is ‘seen’ by the solution and is electrochemically active

    Inter-Cohort Validation of SuStaIn Model for Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder which spans several years from preclinical manifestations to dementia. In recent years, interest in the application of machine learning (ML) algorithms to personalized medicine has grown considerably, and a major challenge that such models face is the transferability from the research settings to clinical practice. The objective of this work was to demonstrate the transferability of the Subtype and Stage Inference (SuStaIn) model from well-characterized research data set, employed as training set, to independent less-structured and heterogeneous test sets representative of the clinical setting. The training set was composed of MRI data of 1043 subjects from the Alzheimer's disease Neuroimaging Initiative (ADNI), and the test set was composed of data from 767 subjects from OASIS, Pharma-Cog, and ViTA clinical datasets. Both sets included subjects covering the entire spectrum of AD, and for both sets volumes of relevant brain regions were derived from T1-3D MRI scans processed with Freesurfer v5.3 cross-sectional stream. In order to assess the predictive value of the model, subpopulations of subjects with stable mild cognitive impairment (MCI) and MCIs that progressed to AD dementia (pMCI) were identified in both sets. SuStaIn identified three disease subtypes, of which the most prevalent corresponded to the typical atrophy pattern of AD. The other SuStaIn subtypes exhibited similarities with the previously defined hippocampal sparing and limbic predominant atrophy patterns of AD. Subject subtyping proved to be consistent in time for all cohorts and the staging provided by the model was correlated with cognitive performance. Classification of subjects on the basis of a combination of SuStaIn subtype and stage, mini mental state examination and amyloid-β1-42 cerebrospinal fluid concentration was proven to predict conversion from MCI to AD dementia on par with other novel statistical algorithms, with ROC curves that were not statistically different for the training and test sets and with area under curve respectively equal to 0.77 and 0.76. This study proves the transferability of a SuStaIn model for AD from research data to less-structured clinical cohorts, and indicates transferability to the clinical setting

    ABCD Neurocognitive Prediction Challenge 2019: Predicting individual residual fluid intelligence scores from cortical grey matter morphology

    Get PDF
    We predicted residual fluid intelligence scores from T1-weighted MRI data available as part of the ABCD NP Challenge 2019, using morphological similarity of grey-matter regions across the cortex. Individual structural covariance networks (SCN) were abstracted into graph-theory metrics averaged over nodes across the brain and in data-driven communities/modules. Metrics included degree, path length, clustering coefficient, centrality, rich club coefficient, and small-worldness. These features derived from the training set were used to build various regression models for predicting residual fluid intelligence scores, with performance evaluated both using cross-validation within the training set and using the held-out validation set. Our predictions on the test set were generated with a support vector regression model trained on the training set. We found minimal improvement over predicting a zero residual fluid intelligence score across the sample population, implying that structural covariance networks calculated from T1-weighted MR imaging data provide little information about residual fluid intelligence.Comment: 8 pages plus references, 3 figures, 2 tables. Submission to the ABCD Neurocognitive Prediction Challenge at MICCAI 201

    Between-session reliability of isometric midthigh pull kinetics and maximal power clean performance in male youth soccer players

    Get PDF
    © 2017 National Strength and Conditioning Association. The aim of the study was to determine the between-session reliability of isometric midthigh pull (IMTP) kinetics and maximal weight lifted during the power clean (PC) in male youth soccer players, and to identify the smallest detectable differences between sessions. Thirteen male youth soccer players (age: 16.7 ± 0.5 years, height: 1.80 ± 0.08 m, and mass: 70.5 ± 9.4 kg) performed 3 IMTP trials, whereas only 10 soccer players performed maximal PCs. These were performed twice, separated by 48 hours to examine the between-session reliability. Intraclass correlation coefficients (ICCs) and coefficient of variation (CV) demonstrated high levels of within-session (ICC = 0.84–0.98, CV = 4.05–10.00%) and between-session reliability (ICC = 0.86–0.96, CV = 3.76–7.87%) for IMTP kinetics (peak force [PF] and time-specific force values 30–250 ms) and maximal PC (ICC = 0.96, CV = 3.23%), all meeting minimum acceptable reliability criteria. No significant differences (p > 0.05, effect size ≤0.22) were revealed between sessions for IMTP kinetics and maximal PC performance. Strength and conditioning coaches and practitioners should consider changes of >6.04% in maximal PC and changes in IMTP kinetics of >14.31% in force at 30 ms, >14.73% in force at 50 ms, >12.36% in force at 90 ms, >12.37% in force at 100 ms, >14.51% in force at 150 ms, >11.71% in force at 200 ms, >7.23% in force at 250 ms, and >8.50% in absolute PF as meaningful improvements in male youth soccer players. Decrements in the IMTP kinetics greater than the aforementioned values could possibly be used as an indicator of neuromuscular fatigue and preparedness for training or competition
    • …
    corecore