2,277 research outputs found

    CPT symmetry and antimatter gravity in general relativity

    Full text link
    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.Comment: 6 pages, to be published in EPL (http://epljournal.edpsciences.org/

    An Upper Limit on the Reflected Light from the Planet Orbiting the Star tau Bootis

    Get PDF
    The planet orbiting tau Boo at a separation of 0.046 AU could produce a reflected light flux as bright as 1e-4 relative to that of the star. A spectrum of the system will contain a reflected light component which varies in amplitude and Doppler-shift as the planet orbits the star. Assuming the secondary spectrum is primarily the reflected stellar spectrum, we can limit the relative reflected light flux to be less than 5e-5. This implies an upper limit of 0.3 for the planetary geometric albedo near 480 nm, assuming a planetary radius of 1.2 R_Jup. This albedo is significantly less than that of any of the giant planets of the solar system, and is not consistent with certain published theoretical predictions.Comment: 5 pages, 1 figure, accepted by ApJ Letter

    A High-Eccentricity Low-Mass Companion to HD 89744

    Full text link
    HD 89744 is an F7 V star with mass 1.4 M, effective temperature 6166 K, age 2.0 Gy and metallicity [Fe/H]= 0.18. The radial velocity of the star has been monitored with the AFOE spectrograph at the Whipple Observatory since 1996, and evidence has been found for a low mass companion. The data were complemented by additional data from the Hamilton spectrograph at Lick Observatory during the companion's periastron passage in fall 1999. As a result, we have determined the star's orbital wobble to have period P = 256 d, orbital amplitude K = 257 m/s, and eccentricity e = 0.7. From the stellar mass we infer that the companion has minimum mass m2 sin i = 7.2 MJup in an orbit with semi-major axis a2 = 0.88 AU. The eccentricity of the orbit, among the highest known for extra-solar planets, continues the trend that extra-solar planets with semi-major axes greater than about 0.15 AU tend to have much higher eccentricities than are found in our solar system. The high metallicity of the parent star reinforces the trend that parent stars of extra-solar planets tend to have high metallicityComment: AASTEX-LateX v5.0, 7 pages w/ 3 figures, to be published in ApJ

    Exploring social patterns of participation in university-entrance level mathematics in England

    Get PDF
    In recent years in England there has been considerable attention given to a range of apparent crises in mathematics education, one of which has been the long term decline of participation in university-entrance level (Advanced or A) mathematics. Given the negative impact upon mathematics participation of Curriculum 2000, together with the government’s emphasis on Science Technology Engineering and Mathematics (STEM) subjects, the political intent to increase participation in Advanced level mathematics is clear. This paper uses the National Pupil Database (NPD) to develop a descriptive statistical account of how completion of Advanced level mathematics varies along the social axes of SES, ethnicity and gender. The process of working with the NPD is discussed in some depth in order to clarify the processes involved in this type of quantitative analysis and to illustrate how this analysis can be used to raise questions about who is doing what mathematics in the post-16 age-range

    Hat-P-25b: A Hot-Jupiter Transiting a Moderately Faint G Star

    Get PDF
    We report the discovery of HAT-P-25b, a transiting extrasolar planet orbiting the V = 13.19 G5 dwarf star GSC 1788-01237, with a period P = 3.652836 ± 0.000019 days, transit epoch T_c = 2455176.85173 ± 0.00047 (BJD—barycentric Julian dates throughout the paper are calculated from Coordinated Universal Time, UTC), and transit duration 0.1174 ± 0.0017 days. The host star has a mass of 1.01 ± 0.03 M_☉, radius of 0.96^(+0.05)_(– 0.04) R_☉, effective temperature 5500 ± 80 K, and metallicity [Fe/H] = +0.31 ± 0.08. The planetary companion has a mass of 0.567 ± 0.022 M_J and radius of 1.190^(+0.081)_(–0.056) R_J yielding a mean density of 0.42 ± 0.07 g cm^(–3)

    Diffusion-limited reaction for the one-dimensional trap system

    Full text link
    We have previously discussed the one-dimensional multitrap system of finite range and found the somewhat unexpected result that the larger is the number of imperfect traps the higher is the transmission through them. We discuss in this work the effect of a small number of such traps arrayed along either a constant or a variable finite spatial section. It is shown that under specific conditions, to be described in the following, the remarked high transmission may be obtained for this case also. Thus, compared to the theoretical large number of traps case these results may be experimentally applied to real phenomenaComment: 18 pages, 8 PS Figures; 3 former figures were removed, a new section added and the representation is improve

    Shape-based peak identification for ChIP-Seq

    Get PDF
    We present a new algorithm for the identification of bound regions from ChIP-seq experiments. Our method for identifying statistically significant peaks from read coverage is inspired by the notion of persistence in topological data analysis and provides a non-parametric approach that is robust to noise in experiments. Specifically, our method reduces the peak calling problem to the study of tree-based statistics derived from the data. We demonstrate the accuracy of our method on existing datasets, and we show that it can discover previously missed regions and can more clearly discriminate between multiple binding events. The software T-PIC (Tree shape Peak Identification for ChIP-Seq) is available at http://math.berkeley.edu/~vhower/tpic.htmlComment: 12 pages, 6 figure

    HAT-P-5b: A Jupiter-like hot Jupiter Transiting a Bright Star

    Get PDF
    We report the discovery of a planet transiting a moderately bright (V = 12.00) G star, with an orbital period of 2.788491 +/-0.000025 days. From the transit light curve we determine that the radius of the planet is Rp = 1.257 +/- 0.053 RJup. HAT-P-5b has a mass of Mp = 1.06 +/- 0.11 MJup, similar to the average mass of previously-known transiting exoplanets, and a density of rho = 0.66 +/- 0.11 g cm^-3 . We find that the center of transit is Tc = 2,454,241.77663 +/- 0.00022 (HJD), and the total transit duration is 0.1217 +/- 0.0012 days.Comment: 5 pages, submitted to APJ
    • 

    corecore