15,934 research outputs found
Aerothermal tests of a 12.5 percent cone at Mach 6.7 for various Reynolds numbers, angles of attack and nose shapes
The effects of free-stream unit Reynolds number, angle of attack, and nose shape on the aerothermal environment of a 3-ft basediameter, 12.5 deg half-angle cone were investigated in the Langley 8-foot high temperature tunnel at Mach 6.7. The average total temperature was 3300 R, the freestream unit Reynolds number ranged from 400,000 to 1,400,000 per foot, and the angle of attack ranged from 0 deg to 10 deg. Three nose configurations were tested on the cone: a 3-in-radius tip, a 1-in-radius tip on an ogive frustum, and a sharp tip on an ogive frustum. Surface-pressure and cold-wall heating-rate distributions were obtained for laminar, transitional temperature in the shock layer were obtained. The location of the start of transition moved forward both on windward and leeward sides with increasing free-stream Reynolds numbers, increasing angle of attack, and decreasing nose bluntness
Exchange Bias driven by Dzyaloshinskii-Moriya interactions
The exchange bias effect in compensated IrMn3/Co(111) system is studied using
multiscale modeling from "ab initio" to atomistic calculations. We evaluate
numerically the out-of-plane hysteresis loops of the bi-layer for different
thickness of the ferromagnetic layer. The results show the existence of a
perpendicular exchange bias field and an enhancement of the coercivity of the
system. In order to elucidate the possible origin of the exchange bias, we
analyze the hysteresis loops of a selected bi-layer by tuning the different
contributions to the exchange interactions across the interface. Our results
indicate that the exchange bias is primarily induced by the
Dzyaloshinskii-Moriya interactions, while the coercivity is increased mainly
due to a spin-flop mechanism
Wroclaw neutrino event generator
A neutrino event generator developed by the Wroclaw Neutrino Group is
described. The physical models included in the generator are discussed and
illustrated with the results of simulations. The considered processes are
quasi-elastic scattering and pion production modelled by combining the
resonance excitation and deep inelastic scattering.Comment: Talk given at 2nd Scandanavian Neutrino Workshop (SNOW 2006),
Stockholm, Sweden, 2-6 May 2006. 3 pages, 6 figure
Radiative, actively cooled panel tests results
The radiative, actively cooled panel designed to withstand a uniform incident heat flux of 136 kW/sq m to a 444 K surface temperature was evaluated. The test program consisted of preliminary static thermal mechanical loading and aerothermal flow tests. Test results are briefly discussed
Flightweight radiantly and actively cooled panel: Thermal and structural performance
A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel
Study of 'ratio' automatically assembled structures final report, 15 jun. 1963 - 15 jun. 1964
Structural analysis of RATIO automatically assembled panel sections for application to spaceborne paraboloidal antenn
Selected reliability studies for the NERVA program
An investigation was made into certain methods of reliability analysis that are particularly suitable for complex mechanisms or systems in which there are many interactions. The methods developed were intended to assist in the design of such mechanisms, especially for analysis of failure sensitivity to parameter variations and for estimating reliability where extensive and meaningful life testing is not feasible. The system is modeled by a network of interconnected nodes. Each node is a state or mode of operation, or is an input or output node, and the branches are interactions. The network, with its probabilistic and time-dependent paths is also analyzed for reliability and failure modes by a Monte Carlo, computerized simulation of system performance
The supermassive black hole in NGC4486a detected with SINFONI at the VLT
The near-infrared integral field spectrograph SINFONI at the ESO VLT opens a
new window for the study of central supermassive black holes. With a near-IR
spatial resolution similar to HST optical and the ability to penetrate dust it
provides the possibility to explore the low-mass end of the M-sigma relation
(sigma<120km/s) where so far very few black hole masses were measured with
stellar dynamics. With SINFONI we observed the central region of the
low-luminosity elliptical galaxy NGC4486a at a spatial resolution of ~0.1arcsec
in the K band. The stellar kinematics was measured with a maximum penalised
likelihood method considering the region around the CO absorption band heads.
We determined a black hole mass of M_BH=1.25^{+0.75}_{-0.79} x 10^7 M_sun (90%
C.L.) using the Schwarzschild orbit superposition method including the full
2-dimensional spatial information. This mass agrees with the predictions of the
M-sigma relation, strengthening its validity at the lower sigma end.Comment: 7 pages, 7 figures. Accepted by MNRA
Constrained Monte Carlo Method and Calculation of the Temperature Dependence of Magnetic Anisotropy
We introduce a constrained Monte Carlo method which allows us to traverse the
phase space of a classical spin system while fixing the magnetization
direction. Subsequently we show the method's capability to model the
temperature dependence of magnetic anisotropy, and for bulk uniaxial and cubic
anisotropies we recover the low-temperature Callen-Callen power laws in M. We
also calculate the temperature scaling of the 2-ion anisotropy in L10 FePt, and
recover the experimentally observed M^2.1 scaling. The method is newly applied
to evaluate the temperature dependent effective anisotropy in the presence of
the N'eel surface anisotropy in thin films with different easy axis
configurations. In systems having different surface and bulk easy axes, we show
the capability to model the temperature-induced reorientation transition. The
intrinsic surface anisotropy is found to follow a linear temperature behavior
in a large range of temperatures
Laser induced magnetization switching in films with perpendicular anisotropy: a comparison between measurements and a multi-macrospin model
Thermally-assisted ultra-fast magnetization reversal in a DC magnetic field
for magnetic multilayer thin films with perpendicular anisotropy has been
investigated in the time domain using femtosecond laser heating. The experiment
is set-up as an optically pumped stroboscopic Time Resolved Magneto-Optical
Kerr Effect magnetometer. It is observed that a modest laser fluence of about
0.3 mJ/square-cm induces switching of the magnetization in an applied field
much less than the DC coercivity (0.8 T) on the sub-nanosecond time-scale. This
switching was thermally-assisted by the energy from the femtosecond pump-pulse.
The experimental results are compared with a model based on the Landau
Lifschitz Bloch equation. The comparison supports a description of the reversal
process as an ultra-fast demagnetization and partial recovery followed by
slower thermally activated switching due to the spin system remaining at an
elevated temperature after the heating pulse.Comment: 8 pages, 10 figures, to be submitted to PR
- …