190 research outputs found

    Isoprostane in systemic sclerosis: a systematic review and meta-analysis

    Get PDF
    Objectives: To further the knowledge of oxidative stress in systemic sclerosis (SSc), we performed a systematic review and meta-analysis on studies measuring isoprostane, a vasoactive agent deriving from arachidonic acid and implicated in the vasculopathy of SSc. Methods: Systematic search following the PRISMA guidelines in PubMed and EMBASE between January-1990/December-2017 using the terms: oxidative stress, isoprostane, systemic sclerosis and scleroderma. Results: After the screening process, 8 studies including 240 SSc patients and 192 controls were included in the systematic review and meta-analysis, 6 investigating urinary and 2 serum isoprostane: random effect meta-analysis revealed isoprostane overgeneration in SSc (p <.001) with wide heterogeneity (I 2 = 75%). Subgroup analysis on urinary isoprostane favoured excess excretion in SSc (p =.009) with slightly lower heterogeneity (I 2 = 67%); further subgroup analysis according to unit of measurement revealed no increased isoprostane excretion when expressed as pg/mg creatinine but increased when expressed as pmol/mmol creatinine (p =.05) with medium heterogeneity (I 2 = 32%). Subgroup analysis on serum isoprostane favoured overproduction in SSc (p <.0001) with no heterogeneity. Conclusion: There is some evidence for isoprostane overgeneration in SSc that confirms the occurrence of oxidative stress in this setting: further prospective studies with specified outcomes are needed to evaluate the prognostic value of this functional biomarker

    Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial?

    Get PDF
    Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future

    Influence of antioxidant (L- ascorbic acid) on tolbutamide induced hypoglycaemia/antihyperglycaemia in normal and diabetic rats

    Get PDF
    BACKGROUND: Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycaemia. Increased oxidative stress and decreased antioxidant levels are the leading cause of diabetes and diabetic complications. So it is felt that supplementation of antioxidants may be useful in controlling the glucose levels and to postpone the occurrence of diabetic complications. The objective of our study is to find the influence of antioxidant supplementation (L-ascorbic acid) on tolbutamide activity in normal and diabetic rats. METHODS: L- ascorbic acid/tolbutamide/L-ascorbic acid + tolbutamide were administered orally to 3 different groups of albino rats of either sex in normal and diabetic condition. Blood samples were collected from retro-orbital puncture at different time intervals and were analyzed for blood glucose by GOD-POD method. Diabetes was induced by alloxan 100 mg/kg body weight administered by I.P route. RESULTS: L-ascorbic acid/ tolbutamide produced hypoglycaemic activity in a dose dependant manner in normal and diabetic condition. In the presence of L-ascorbic acid, tolbuatmide produced early onset of action and maintained for longer period compared to tolbutamide matching control. CONCLUSION: Supplementation of antioxidants like L-ascorbic acid was found to improve tolbutamide response in normal and diabetic rats

    No effect of creatine supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats

    Get PDF
    Background: Exacerbated oxidative stress is thought to be a mediator of arterial hypertension. It has been postulated that creatine (Cr) could act as an antioxidant agent preventing increased oxidative stress. The aim of this study was to investigate the effects of nine weeks of Cr or placebo supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats (SHR). Findings: Lipid hydroperoxidation, one important oxidative stress marker, remained unchanged in the coronary artery (Cr: 12.6 +/- 1.5 vs. Pl: 12.2 +/- 1.7 nmol.mg(-1); p = 0.87), heart (Cr: 11.5 +/- 1.8 vs. Pl: 14.6 +/- 1.1 nmol.mg(-1); p = 0.15), plasma (Cr: 67.7 +/- 9.1 vs. Pl: 56.0 +/- 3.2 nmol.mg(-1); p = 0.19), plantaris (Cr: 10.0 +/- 0.8 vs. Pl: 9.0 +/- 0.8 nmol.mg(-1); p = 0.40), and EDL muscle (Cr: 14.9 +/- 1.4 vs. Pl: 17.2 +/- 1.5 nmol.mg(-1); p = 0.30). Additionally, Cr supplementation affected neither arterial blood pressure nor heart structure in SHR (p > 0.05). Conclusions: Using a well-known experimental model of systemic arterial hypertension, this study did not confirm the possible therapeutic effects of Cr supplementation on oxidative stress and cardiovascular dysfunction associated with arterial hypertension.FAPES

    Modulation of endogenous antioxidant defense and the progression of kidney disease in multi-heritage groups of patients with type 2 diabetes: PRospective EValuation of Early Nephropathy and its Treatment (PREVENT).

    Get PDF
    BACKGROUND: Diabetes is the western world's leading cause of end-stage renal disease. Glucose-dependent, oxidative stress is linked to the development of renal inflammation and sclerosis, which, in animal models of diabetes, can be prevented by anti-oxidative treatment. Patients of non-Caucasian heritage have low activity of the selenoprotein, antioxidant enzyme, glutathione peroxidase (GPx) and its co-factor vitamin E, which may be linked to their increased propensity to developing end-stage renal disease. RESEARCH DESIGN AND METHODS: We have designed a double-blind, randomized, placebo controlled study with selenium and/or vitamin E versus placebo as the interventions for patients with type 2 diabetes and chronic kidney disease (CKD) stages 1-3. A 2 × 2 factorial design will allow a balanced representation of the heritage groups exposed to each intervention. The primary biochemical outcome is change in GPx activity, and clinical outcome measure is the actual, rate of-and/or percentage change in estimated glomerular filtration rate (eGFR) from baseline. Analysis will be with a marginal model for longitudinal data using Generalized Estimating Equations corrected for measures of baseline serum antioxidant enzyme activities (GPx, superoxide dismutase and catalase), micronutrient levels (vitamins E and C), measures of inflammation (interleukin 6, c-reactive protein and monocyte chemoattractant protein-1) and markers of oxidative damage (plasma 8-isoprostaglandin F2α and urinary 8-hydroxydeoxyguanosine). EXPECTED RESULTS: The study will assess the relationship between GPx activity, oxidative stress, inflammation and eGFR. It will test the null hypothesis that antioxidant therapy does not influence the activity of GPx or other antioxidant enzymes and/or alter the rate of change in eGFR in these patient groups. CONCLUSIONS: Outcome data on the effect of antioxidants in human diabetic renal disease is limited. Previous post hoc analyses have not shown a beneficial effect of vitamin E on renal function. A recent trial of a pharmaceutical antioxidant agent, improved eGFR, but in patients with advanced diabetes-related chronic kidney disease its use was associated with an increased incidence of cardiovascular events. We will explore whether the nutritional antioxidants, vitamin E and selenium alone, or in combination in patients at high risk of renal disease progression, forestalls a reduction in eGFR. The study will describe whether endogenous antioxidant enzyme defenses can be safely modified by this intervention and how this is associated with changes in markers of oxidative stress. Trial registration ISRCTN 97358113. Registered 21st September 2009

    Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2)

    Get PDF
    Green tea, mainly through its constituents epigallocatechin gallate, epigallocatechin, epicatechin gallate and epicatechin, has demonstrated anticarcinogenic activity in several animal models, including those for skin, lung and gastro-intestinal tract cancer, although less is known about colorectal cancer. Quercetin, the major flavonoid present in vegetables and fruit, exerts potential anticarcinogenic effects in animal models and cell cultures, but less is known about quercetin glucosides. The objectives of this study were to investigate (i) the antioxidant activity of the phenolic compounds epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside; (ii) the cytotoxicity of different concentrations of epicatechin, epigallocatechin gallate, and gallic acid; (iii) the cellular uptake of epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside and (iv) their effect on the cell cycle. Human colon adenocarcinoma cells were used as experimental model. The results of this study indicate that all dietary flavonoids studied (epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside) show a significant antioxidant effect in a chemical model system, but only epigallocatechin gallate or gallic acid are able to interfere with the cell cycle in Caco2 cell lines. These data suggest that the antioxidant activity of flavonoids is not related to the inhibition of cellular growth. From a structural point of view, the galloyl moiety appears to be required for both the antioxidant and the antiproliferative effects

    Paricalcitol reduces oxidative stress and inflammation in hemodialysis patients

    Get PDF
    Background: Treatment with selective vitamin D receptor activators such as paricalcitol have been shown to exert an anti-inflammatory effect in patients on hemodialysis, in addition to their action on mineral metabolism and independently of parathyroid hormone (PTH) levels. The objective of this study was to evaluate the additional antioxidant capacity of paricalcitol in a clinical setting. Methods: The study included 19 patients with renal disease on hemodialysis, of whom peripheral blood was obtained for analysis at baseline and three months after starting intravenous paricalcitol treatment. The following oxidizing and inflammatory markers were quantified: malondialdehyde (MDA), nitrites and carbonyl groups, indoleamine 2,3-dioxygenase (IDO), tumor necrosis factor alfa (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18) and C-reactive protein (CRP). Of the antioxidants and anti-inflammatory markers, superoxide dismutase (SOD), catalase, reduced glutathione (GSH), thioredoxin, and interleukin-10 (IL-10) levels were obtained. Results: Baseline levels of oxidation markers MDA, nitric oxide and protein carbonyl groups significantly decreased after three months on paricalcitol treatment, while levels of GSH, thioredoxin, catalase and SOD activity significantly increased. After paricalcitol treatment, levels of the inflammatory markers CRP, TNF-α, IL-6 and IL-18 were significantly reduced in serum and the level of anti-inflammatory cytokine IL-10 was increased. Conclusions: In renal patients undergoing hemodialysis, paricalcitol treatment significantly reduces oxidative stress and inflammation, two well known factors leading to cardiovascular damageBackground: Treatment with selective vitamin D receptor activators such as paricalcitol have been shown to exert an anti-inflammatory effect in patients on hemodialysis, in addition to their action on mineral metabolism and independently of parathyroid hormone (PTH) levels. The objective of this study was to evaluate the additional antioxidant capacity of paricalcitol in a clinical setting. Methods: The study included 19 patients with renal disease on hemodialysis, of whom peripheral blood was obtained for analysis at baseline and three months after starting intravenous paricalcitol treatment. The following oxidizing and inflammatory markers were quantified: malondialdehyde (MDA), nitrites and carbonyl groups, indoleamine 2,3-dioxygenase (IDO), tumor necrosis factor alfa (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18) and C-reactive protein (CRP). Of the antioxidants and anti-inflammatory markers, superoxide dismutase (SOD), catalase, reduced glutathione (GSH), thioredoxin, and interleukin-10 (IL-10) levels were obtained. Results: Baseline levels of oxidation markers MDA, nitric oxide and protein carbonyl groups significantly decreased after three months on paricalcitol treatment, while levels of GSH, thioredoxin, catalase and SOD activity significantly increased. After paricalcitol treatment, levels of the inflammatory markers CRP, TNF-α, IL-6 and IL-18 were significantly reduced in serum and the level of anti-inflammatory cytokine IL-10 was increased. Conclusions: In renal patients undergoing hemodialysis, paricalcitol treatment significantly reduces oxidative stress and inflammation, two well known factors leading to cardiovascular damage
    corecore