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Abstract 30 

Context 31 

Oxidative stress is implicated in the development of microvascular disease and is associated with 32 

an upregulation of vascular endothelial growth factor (VEGF) which is pathogenetically linked 33 

to microvascular complications of diabetes. Patients of African origin have an increased 34 

susceptibility to microvascular kidney disease compared with Caucasians, the reasons and the 35 

mechanisms that contributes to this vulnerability are unclear.  36 

Objectives 37 

Primary) Investigate whether there are ethnic differences in Lipopolysaccharide induced 38 

monocyte VEGF production in whole blood cell cultures. Secondary) whether stimulated VEGF 39 

production is related to prevailing oxidative stress assessed by plasma lipid hydroperoxides 40 

(LOOH) and α-Tocopherol. 41 

Design and Setting 42 

Cross sectional study at a secondary care centre in North London, UK, serving an inner-city 43 

community of 154,000 adults.   44 

Patients 45 

African-Caribbean and Caucasian patients with type 2 diabetes (n=52) 46 

 47 

 48 
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Results 49 

Lipopolysaccharide induced production of VEGF in whole blood cultures (61.8[31.9] pg/mL to 50 

78.4[36.0] pg/mL; p<0.001) that correlated positively with LOOH levels (r=0.3, P=0.04) and was 51 

significantly higher in African-Caribbean than Caucasian type 2 diabetes patients (404 [207.5] vs 52 

268.8 [137.0] pg/mL X109/L monocytes; P=0.018). Plasma α-Tocopherol concentration was 53 

higher in Caucasian patients (40.3[18.3] vs 30.0[9.6] µmol/L; p=0.04) compared to African-54 

Caribbeans. 55 

Conclusions: 56 

This study suggests that the redox environment influences VEGF production in response to 57 

proinflammatory stimuli in type 2 diabetes. The differential responsiveness by ethnic origin may 58 

be of relevance in the variations in susceptibility to the long-term microvascular complications.  59 

 60 

  61 
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Introduction 62 

Diabetes mellitus affects more than 415 million individuals worldwide (1), the most common form 63 

is type 2 diabetes, that is characterized by persistent hyperglycaemia, the degree and the duration 64 

of which are well established as central in the development of vascular complications including 65 

diabetic kidney disease. This complication has a predilection for patients of African descent 66 

compared with Caucasian origin and is the leading cause of end stage renal disease (ESRD) (2). 67 

The incidence of ESRD related diabetes is four to six times higher in patients of African descent 68 

compared to Caucasians (3). 69 

 70 

It is understood that hyperglycaemia gives rise to the accumulation of advanced glycation end 71 

product proteins and reactive oxygen species which, together with their deficient disposal causes 72 

a metabolic imbalance known as oxidative stress (4, 5). In diabetic conditions, lipid hydroperoxide 73 

levels and histological damage of increased oxidative stress is increased in the kidney of animal 74 

models and can be reduced by antioxidant therapy (6, 7). The mechanisms related to free radical 75 

exposure that gives rise to tissue damage involves induction of pro-inflammatory pathways and 76 

cytokine release (8, 9). 77 

 78 

Reactive oxygen species upregulate vascular endothelial growth factor (VEGF) expression in 79 

various cell types, such as endothelial cells, smooth muscle cells, and macrophages (10, 11). 80 

Hohenstein et al (2006) reported increased VEGF expression by many different cell types in 81 

diabetic glomeruli compared to controls (12). VEGF increases the transcapillary leak of albumin 82 
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and therefore may contribute to microvascular disease. However, it is unknown if this mechanism 83 

is relevant to the enhanced risk of nephropathy seen in certain sub-groups of patients with diabetes. 84 

 85 

Meta-analysis studies showed that VEGF genetic polymorphisms are associated with increased 86 

risk of diabetic nephropathy in Asian and Caucasian patients (13, 14). We have previously reported 87 

ethnic differences in VEGF +405 polymorphism in patients with diabetes which has been shown 88 

to influence circulating levels of the cytokine (15). However, a genome-wide analysis has not 89 

shown consistent relationships between VEGF polymorphisms and circulating protein in different 90 

populations suggesting that other non-heritable, modulating factors contribute to differences in 91 

circulating levels (16). We reported increased oxidative stress in African-Caribbean patients with 92 

type 2 diabetes compared to Caucasian patients as assessed by lipid peroxidation product, 93 

antioxidant nutrients and antioxidant enzyme activities (17-19). The reasons for this observation 94 

or the mechanisms that could account for these differences are unclear. Therefore, we investigated 95 

the relationship of markers of oxidative stress and VEGF production in patients with type 2 96 

diabetes from different ethnic backgrounds.  97 
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Methods 98 

We studied 52 patients with type 2 diabetes who were part of the Prospective Evaluation of Early 99 

Nephropathy and its Treatment (PREVENT) study. Patients were considered to be of African-100 

Caribbean (AC) origin if both parents were native to either African or Caribbean countries. 101 

Caucasian (CA) white patients were native of Western European or Mediterranean countries.  102 

 103 

Individuals with a history of cardiovascular disease defined as having a clinical record of ischaemic 104 

heart disease (angina, myocardial infarction, coronary artery revascularization and or heart 105 

failure), peripheral vascular disease (intermittent claudication or peripheral artery 106 

revascularization) or cerebrovascular disease (transient ischaemic episodes or stroke), a history of 107 

malignancy or any other life threatening illness, current pregnancy, clinical proteinuria 108 

(albumin:creatinine ratio [ACR] >30 mg/mmol) or inter-current illness were excluded. 109 

Microalbuminuria was diagnosed if ACR was ≥ 3 and < 30mg/mmol in at least 2 of 3 sterile, early 110 

morning urine samples. Therapeutic regimens for hypertension and glucose lowering, and smoking 111 

history (as either current/ex-smoker or non-smoker) were recorded. The study was approved by 112 

the ethics committee of the Whittington Hospital Trust and all patients provided written, informed 113 

consent. 114 

 115 

Patients were studied in the post-prandial state after 12 hour fast. Body mass index (BMI) was 116 

calculated from weight in kg divided by height in m2. Sitting blood pressure was measured after 117 

10 minutes rest using a validated automated machine (OMRON 705HEM CP; OMRON 118 

Healthcare, West Sussex, U.K.) using an appropriate cuff size. Venous blood was taken from an 119 
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antecubital vein. Glycosylated haemoglobin A1c (HbA1c) was measured by a high-performance 120 

liquid chromatography system (Menarini 8140; Menarini Diagnostics, Wokingham, U.K.). Total 121 

cholesterol and total triglycerides were estimated using enzymatic methods (Boehringer-122 

Mannheim, Mannheim, Germany). Low density lipoprotein-cholesterol was calculated using the 123 

formula 3/4 (Total cholesterol - HDL-cholesterol) mmol/l described by de Cordova (20).  Urinary 124 

albumin and creatinine were measured by immunoturbidimetry (Cobas Fara, Roche Diagnostics, 125 

Lewes, UK) and the Jaffe rate reaction methods, respectively.  126 

 127 

Plasma lipid hydroperoxide (LOOH) concentrations (range in non-diabetic subjects: 0.22-6.22 128 

µmol/L) was measured by ferrous oxidation-xylenol orange (FOX-2) assay in conjunction with 129 

triphenylphosphine method (21). The inter- and intra-assay coefficients of variation (CV) of the 130 

FOX-2 assay are <5 and <6%, respectively. Plasma α-tocopherol concentrations was measured by 131 

HPLC as previously described (17) and corrected for lipid profile with inter- and intra-assay 132 

coefficients of variation of 3%. Total monocyte and platelet counts were measured in whole venous 133 

blood (Advia 120, Bayer, Basingstoke, UK). 134 

 135 

Cell culture 136 

To measure cytokine production, whole blood cell cultures were incubated in triplicates with or 137 

without lipopolysaccharide (LPS) (25mg/mL) to activate monocytes (22). The inter- and intra-138 

assay CVs for VEGF are 6 and 8% respectively. Concentration of the main circulating 165 amino 139 

acid VEGF-A isoform in culture supernatants was determined using an enzyme-linked 140 
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immunosorbent assay (ELISA) kit, according to the manufacturer's protocol (R&D Systems Ltd, 141 

Abingdon, UK). 142 

 143 

Statistics 144 

Analyses were performed using Stata 14.2 (Stata Corp, Texas, USA). Continuous variables were 145 

compared using parametric or non-parametric tests according to their distribution. Categorical 146 

variables were compared using the Chi-squared or Fishers exact tests. Variables with skewed 147 

distribution were log transformed before analyses. At an alpha of 0.05, the study had 98% power 148 

to detect a 16 pg/ml increase in LPS-stimulated VEGF. The multivariate model was based upon 149 

inputting those variables that were significantly different between the groups and/or of biological 150 

relevance to VEGF release. All tests were 2-tailed and a p value <0.05 was accepted as being 151 

statistically significant. 152 

 153 

 154 

Results 155 

The African-Caribbean and Caucasian groups had similar chronological age, body mass index, 156 

systolic and diastolic blood pressure, fasting plasma glucose, glycated haemoglobin and 157 

cholesterols, and prevalence of retinopathy and microalbuminuria. There were more males in the 158 

African- Caribbean group and they tended to have a longer duration of diabetes in comparison to 159 

the Caucasian cohort. Whilst the latter were more likely to have a positive smoking history, higher 160 

triglyceride concentrations, monocyte and platelet counts (Table 1).  There were no statistically 161 
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significant differences in the proportions of patients in the African-Caribbean and Caucasian 162 

groups that were prescribed oral hypoglycaemic agents (Metformin and/or Sulphonylureas) or 163 

Insulin (48 vs 53 or 36 vs 25%;p=0.713) for blood glucose management, angiotensin converting 164 

enzyme inhibitors or angiotensin 2 receptor antagonists to lower blood pressure (44 vs 165 

50%;p=0.896) or HMG Co-A reductase inhibitors to lower cholesterol (43 vs 56%;p=1.00). 166 

 167 

Lipopolysaccharide significantly increased VEGF concentrations from 61.8[31.9] pg/mL to 168 

78.4[36.0] pg/mL; p<0.001. Plasma LOOH and LPS stimulated VEGF release corrected for 169 

monocyte count was significantly higher in African-Caribbean patients than Caucasian patients 170 

(Figure 1). Plasma LOOH correlated with VEGF concentration (rho=0.3; p=0.04). Plasma α-171 

Tocopherol concentration was higher in a subset of a group (n=19) of the Caucasian patients 172 

(40.3[18.3] vs 30.0[9.6] µmol/L; p=0.04) compared with group of African-Caribbean patients 173 

(n=15). In multivariate analysis, current and previous history of smoking, female gender, 174 

Caucasian ethnicity (with marginal significance) and age all had negative  coefficients. In this 175 

model, plasma LOOH remained the only statistically significant independent predictor (Table 2). 176 

 177 

Discussion 178 

Our study has found that in patients with type 2 diabetes mellitus, the production of VEGF from 179 

LPS stimulated whole blood cell cultures is higher and proportional to biochemical evidence of 180 

greater exposure to oxidative stress in patients of African-Caribbean compared with Caucasian 181 

origin. These findings are consistent with in vitro studies showing the induction of VEGF by LPS 182 
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in monocytes and its upregulation by superoxide radical generating systems in a time and dose-183 

dependent manner (23).  184 

 185 

A circulating, cellular source of VEGF most notably, appears to have an important role in the 186 

reparation of ischaemic tissues. In animal models of myocardial ischaemia, restoration of blood 187 

flow and preservation of function is associated with VEGF protein production and VEGF receptor 188 

gene expression (24, 25). Studies in humans with myocardial infarction have shown that 189 

circulating VEGF is elevated and the VEGF gene upregulated during the acute phase of injury in 190 

both arterial smooth muscle cells and infiltrating macrophages (26, 27). Furthermore, after acute 191 

cerebral infarction elevation of circulating VEGF occurs in relation to the size of the lesion and 192 

the associated leucocytes (28).  Leucocytes, which can be less populous in people of African origin, 193 

have the same relationship with low-grade inflammation and cardio-metabolic risk seen in other 194 

ethnic groups with higher counts (29). However, the differences in VEGF response we observed 195 

suggests that monocyte function may be modified by the higher levels of glucose-induced 196 

oxidative stress that occurs in the patients of African-Caribbean origin.   197 

 198 

Monocyte-derived, VEGF plays a key role in chronic vascular disease of significance to 199 

vasculopathy in diabetes (30).  Increasing evidence implicates increased tissue production of 200 

VEGF in the development of diabetic retinopathy. In this context, increased expression of VEGF 201 

in the retina and raised levels in the aqueous occur in relation to hypoxia resulting in deleterious 202 

angiogenesis (31-33). Circulating VEGF may be a marker of future renal disease in patients with 203 

diabetes (34). The vascular permeability enhancing effects of VEGF may play a role in the rise in 204 
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urinary albumin excretion. Albuminuria in turn mediates release of other proinflammatory 205 

cytokines (35). In the evolution of diabetic nephropathy, monocytic infiltration is a feature of the 206 

development of tubulo-interstitial lesions. Therefore, oxidative stress induced VEGF could 207 

participate in the cascade of albuminuria, upregulation of chemoattractant molecules, increased 208 

monocyte attraction and trafficking of proinflammatory molecules and fibrogenic cytokines such 209 

as transforming growth factor β1 within the kidney. In a streptozotocin murine model of diabetes, 210 

increased podocyte VEGF signalling has been shown to significantly worsen the characteristic 211 

histological features of nephropathy (36). Lee at al reported that in cultured murine podocytes, 212 

glucose-dependent increases in oxidative stress and VEGF could be completely ameliorated by 213 

different antioxidants (37).  Moreover, it has been reported that the renal changes associated with 214 

the db/db model of diabetes could be abrogated by neutralising anti-VEGF antibody (38).  In 215 

addition, VEGF receptor tyrosine kinase inhibitor (SU5416) reduced albuminuria in type 2 216 

diabetes db/db mouse model (39), supporting the involvement and interplay of increased oxidative 217 

stress with VEGF in the pathogenesis of diabetic nephropathy. An association between high 218 

circulating levels of VEGF and the oxidative effects of ferritin suggests that both have a role in 219 

the development of complications in patients with diabetes (40).  Also, a recently described 220 

association between advanced chronic kidney disease and VEGF implies that it may also have a 221 

role in renal disease progression (41). 222 

 223 

In our study, it would appear that oxidative stress that determined the VEGF response to the 224 

inflammatory stimulus may be a proxy for ethnic origin. Exposure to hyperglycaemia though is 225 

a possible explanation of the differences in redox status between the groups (42). Duration 226 

of diabetes was significantly longer in univariate analysis in the African-Caribbean group 227 
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which however, failed to reach statistical significance as independent predictor in 228 

multivariate analysis.  Dietary factors could be relevant and it is notable that a survey from 229 

the United States suggests that 40% of minority ethnic groups with diabetes have a deficient 230 

micronutrient intake including vitamin E (43). A limitation of our study was that we did not collect 231 

dietary details from our cohort so we were not able to determine whether the differences in 232 

oxidative stress between the groups were related to the intake of vitamin E.   In summary, we show 233 

that a variation in VEGF production by activated, pro-inflammatory cells is related to ambient 234 

oxidative stress. Infiltrating monocytes contribute to renal disease and these findings may have 235 

relevance to differing susceptibility to ESRD. Further clinical studies are required to examine the 236 

role of circulating monocyte VEGF production in the renal complications of diabetes.    237 

 238 
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Table 1. Demographic, clinical, biochemical and haematological characteristics of African-387 

Caribbean and Caucasian patients with type 2 diabetes 388 
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Table 2. Multivariate regression analysis with LPS-stimulated VEGF release corrected for 390 

monocyte as the dependent variable 391 
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Figure 1. Fasting mean (SEM), plasma lipid hydroperoxide (LOOH) in open bars, and vascular 393 

endothelial growth factor (VEGF) in solid bars, after stimulation with lipopolysaccharide 394 

corrected for monocyte count in whole blood cell cultures from patients of African- Caribbean 395 

(AC) and Caucasian (CA) origin with type 2 diabetes 396 

 397 
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Demographic, clinical 

biochemical and haematological 

parameters 

African-Caribbean 

(n=22) 

Caucasian 

(n=30) 

 

p 

Age (years) 63.0 ± 6.4 59.0 ± 10.4 0.12 

Duration of diabetes 13.0 ± 9.5 8.3 ± 6.4 0.04 

BMI (Kg/m2) 28.8 ± 2.8 29.8 ± 5.6 0.47 

Systolic blood pressure(mmHg) 158.9 ± 17.8 153.8 ± 25.8 0.44 

Diastolic blood pressure (mmHg) 

Gender (Male/Female) % 

90.9 ± 8.2 

57/43 

87.4 ± 11.9 

32/68 

0.56 

0.08 

Smoking History (%)    

     Current 9 11  

     Previous  27 49 0.005 

     Never 64 40  

Microalbuminuria (%)  40 36 0.79 

Total Cholesterol (mmol/L) 5.3 ± 0.8 5.4 ± 0.8 0.51 

LDL-cholesterol (mmol/L) 2.2 ± 0.59 2.6 ± 0.91 0.06 

HDL-cholesterol (mmol/L) 1.61 ± 0.48 1.35 ± 0.56 0.07 

Triglycerides (mmol/L) 1.3 ± 0.5 1.8 ± 0.9 0.03 

Fasting plasma glucose (mmol/l) 9.2 ± 3.8 10.9 ± 4.6 0.18 

Table 1 Click here to download Table Demographic.doc 
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1 Data expressed as Mean ± SD 

                                                           
1 Table 1. Demographic, clinical, biochemical and haematological characteristics of African-Caribbean and 

Caucasian patients with type 2 diabetes patients 

HbA1c (%) 8.3 ± 0.9 7.8 ± 1.8 0.21 

Platelet count (x109/L) 

Monocyte count (x109/L) 

196.9 ± 57.9 

0.21 ± 0.1 

236.8 ± 74.5 

0.36 ± 0.17 

0.07 

0.001 



Variable -coefficient t P value 95% CI 

Log10 LOOH 167.23 3.67 <0.001 75.6 to 258.9 

Gender -7.12 -0.45 0.66 -39.3 to 25.0 

Current Smoker -25.62 -0.98 0.33 -78.2 to 27.0 

Previous Smoker -33.63 -1.96 0.06 -68.1 to 0.8 

Ethnicity -24.36 -1.44 0.16 -58.4 to 9.6 

Duration Diabetes -1.43 -1.84 0.07 -3.0 to 0.1 

Log10 triglyceride -0.17 -0.31 0.76 -1.3 to 0.9 
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1 Table 2. Multivariate regression analysis with increase in VEGF release corrected for monocyte count as the 

dependent variable  
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