13 research outputs found

    Quark Matter in a Strong Magnetic Background

    Full text link
    In this chapter, we discuss several aspects of the theory of strong interactions in presence of a strong magnetic background. In particular, we summarize our results on the effect of the magnetic background on chiral symmetry restoration and deconfinement at finite temperature. Moreover, we compute the magnetic susceptibility of the chiral condensate and the quark polarization at zero temperature. Our theoretical framework is given by chiral models: the Nambu-Jona-Lasinio (NJL), the Polyakov improved NJL (or PNJL) and the Quark-Meson (QM) models. We also compare our results with the ones obtained by other groups.Comment: 34 pages, survey. To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Author Correction: One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Diabetes mellitus: new therapeutic approaches to treat an old disease

    No full text
    <p class="MsoNormal" style="margin: 0cm 0cm 0pt; line-height: normal; text-align: justify; mso-layout-grid-align: none;"> Diabetes mellitus is a widespread disease whose frequency increases constantly and is expected to reach alarming levels by the year 2025. Introduction of insulin therapy represented a major breakthrough; however, a very strict regimen is required to maintain blood glucose levels within the normal range and to prevent or postpone chronic complications associated with this disease. Frequent hyper- and hypoglycemia seriously affect the quality of life of these patients. Reversion of this situation can only be achieved through whole organ (pancreas) transplant or pancreatic islet transplant, the former being a high-risk surgical procedure, while the latter is a much simpler and may be accomplished in only 20-40 min. The advantages and perspectives of islet cell transplantation will be discussed, in the light of tissue engineering and gene therapy. Ongoing research carried out in our laboratory, aimed at developing clinical cell and molecular therapy protocols for diabetes will also be focused. Keywords: Diabetes mellitus, cell and molecular therapy, human pancreatic islets, degenerative diseases, recombinant biopharmaceuticals. </p&gt

    Recovery of degraded pasture in Rondônia: macronutrients and productivity of brachiaria brizantha Recuperação de pastagem degradada em Rondônia: macronutrientes e produtividade da brachiaria brizantha

    No full text
    Pasture is the main form of land use in Amazonia. Over time the pasture grass loses vigor and yields decrease, indicating a certain degree of degeneration. The main causes of degradation are lack of pasture maintenance and subsequent weed infestation, the choice of regionally unsuitable forage species and excessive grazing. The main purpose of this study was to evaluate the impact of different recovery managements on soil chemical properties and grass yield of a degraded pasture in Rondônia. For this purpose, an experiment was installed in October 2001, consisting of five treatments: C = control; HA = harrowing + NPK + micronutrients; HE = Herbicide + NK + micronutrients; R = No-tillage rice + NPK + micronutrients; and S = No-tillage soybean + PK + micronutrients. The following N, P and K sources were used: ammonium sulfate for N, calcined phosphate for P and potassium chloride for K. The experiment was arranged in a randomized block design with four replications. The shoot dry matter yield of the grass was analyzed as of the 35th month of experimentation, in a dry and a rainy period. Phosphorus fertilization resulted in significant increases in Ca2+ and Mg2+ and increasing trend of P in the topsoil in the initial months of the experiment in treatments HA and S and increases in Ca2+ and P (trend) in the treatment R. The cumulative production of Brachiaria brizantha, from Sep/2004 to Mar/2005, was 30,025, 28,267 and 27,735 kg ha-1 shoot dry matter in the treatments HA, R and S, respectively. These values differed significantly from treatments C and HE, with 17,040 and 17,057 kg ha-1, respectively. It was concluded that phosphorus fertilization associated to pasture reform was effective to raise the dry matter yield of Brachiaria brizantha. Rice or soybean under no-tillage is recommended as a practice of pasture recovery, due to the residual effect of fertilization.<br>As pastagens consistem no principal uso da terra na Amazônia. Com o tempo de utilização do pasto, a gramínea perde o vigor e reduz a produtividade, caracterizando algum estado de degradação. Entre as principais causas de degradação estão a falta de manutenção do pasto e consequente infestação de plantas invasoras, a escolha de espécies forrageiras inadequadas à região e o pastejo excessivo. O objetivo principal desta pesquisa foi avaliar o impacto de diferentes manejos de recuperação sobre os atributos químicos do solo e a produtividade da gramínea numa pastagem degradada em Rondônia. Para atingir esse objetivo, foi instalado, em outubro de 2001, um experimento composto de 5 tratamentos: T = testemunha (controle); G = gradagem + NPK + micronutrientes; H = herbicida + NK + micronutrientes; A = plantio direto de arroz + NPK + micronutrientes; e S = Plantio direto de soja + PK+ micronutrientes. As seguintes fontes de N, P e K foram utilizadas: sulfato de amônio para N, termofosfato para o P e cloreto de potássio para o K. O delineamento experimental foi em blocos ao acaso, com quatro repetições. A produção de matéria seca da parte área da gramínea foi analisada a partir do trigésimo quinto mês de experimentação, englobando um período seco e outro úmido. A adubação fosfatada propiciou incrementos significativos de Ca2+ e Mg2+ e tendência de aumento de P na camada superficial do solo nos primeiros meses de condução do experimento nos tratamentos G e S e incrementos de Ca2+ e P (tendência) no tratamento A. A produtividade acumulada de Brachiaria brizantha, obtida entre os meses de set/2004 e mar/2005, foi de 30.025, 28.267 e 27.735 kg ha-1 de matéria seca da parte aérea, nos tratamentos G, A e S, respectivamente, as quais diferiram significativamente dos tratamentos T e H: 17.040 e 17.057 kg ha-1, respectivamente. Concluiu-se que a adubação fosfatada, associada à reforma da pastagem, foi efetiva no incremento de produção da matéria seca de Brachiaria brizantha. O plantio direto do arroz ou da soja é aconselhável como prática de reforma de pastagens, por propiciar o efeito residual da adubação

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures
    corecore