54 research outputs found

    Regulation of Cementoblast Gene Expression by Inorganic Phosphate In Vitro

    Full text link
    Examination of mutant and knockout phenotypes with altered phosphate/pyrophosphate distribution has demonstrated that cementum, the mineralized tissue that sheathes the tooth root, is very sensitive to local levels of phosphate and pyrophosphate. The aim of this study was to examine the potential regulation of cementoblast cell behavior by inorganic phosphate (P i ). Immortalized murine cementoblasts were treated with P i in vitro , and effects on gene expression (by quantitative real-time reverse-transcriptase polymerase chain reaction [RT-PCR]) and cell proliferation (by hemacytometer count) were observed. Dose-response (0.1–10 mM) and time-course (1–48 hours) assays were performed, as well as studies including the Na-P i uptake inhibitor phosphonoformic acid. Real-time RT-PCR indicated regulation by phosphate of several genes associated with differentiation/mineralization. A dose of 5 mM P i upregulated genes including the SIBLING family genes osteopontin ( Opn , >300% of control) and dentin matrix protein-1 ( Dmp-1 , >3,000% of control). Another SIBLING family member, bone sialoprotein ( Bsp ), was downregulated, as were osteocalcin ( Ocn ) and type I collagen ( Col1 ). Time-course experiments indicated that these genes responded within 6–24 hours. Time-course experiments also indicated rapid regulation (by 6 hours) of genes concerned with phosphate/pyrophosphate homeostasis, including the mouse progressive ankylosis gene ( Ank ), plasma cell membrane glycoprotein-1 ( Pc-1 ), tissue nonspecific alkaline phosphatase ( Tnap ), and the Pit1 Na-P i cotransporter. Phosphate effects on cementoblasts were further shown to be uptake-dependent and proliferation-independent. These data suggest regulation by phosphate of multiple genes in cementoblasts in vitro . During formation, phosphate and pyrophosphate may be important regulators of cementoblast functions including maturation and regulation of matrix mineralization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48015/1/223_2005_Article_184.pd

    Central Role of Pyrophosphate in Acellular Cementum Formation

    Get PDF
    Background: Inorganic pyrophosphate (PPi) is a physiologic inhibitor of hydroxyapatite mineral precipitation involved in regulating mineralized tissue development and pathologic calcification. Local levels of PPi are controlled by antagonistic functions of factors that decrease PPi and promote mineralization (tissue-nonspecific alkaline phosphatase, Alpl/TNAP), and those that increase local PPi and restrict mineralization (progressive ankylosis protein, ANK; ectonucleotide pyrophosphatase phosphodiesterase-1, NPP1). The cementum enveloping the tooth root is essential for tooth function by providing attachment to the surrounding bone via the nonmineralized periodontal ligament. At present, the developmental regulation of cementum remains poorly understood, hampering efforts for regeneration. To elucidate the role of PPi in cementum formation, we analyzed root development in knock-out ((-/-)) mice featuring PPi dysregulation. Results: Excess PPi in the Alpl(-/-) mouse inhibited cementum formation, causing root detachment consistent with premature tooth loss in the human condition hypophosphatasia, though cementoblast phenotype was unperturbed. Deficient PPi in both Ank and Enpp1(-/-) mice significantly increased cementum apposition and overall thickness more than 12-fold vs. controls, while dentin and cellular cementum were unaltered. Though PPi regulators are widely expressed, cementoblasts selectively expressed greater ANK and NPP1 along the root surface, and dramatically increased ANK or NPP1 in models of reduced PPi output, in compensatory fashion. In vitro mechanistic studies confirmed that under low PPi mineralizing conditions, cementoblasts increased Ank (5-fold) and Enpp1 (20-fold), while increasing PPi inhibited mineralization and associated increases in Ank and Enpp1 mRNA. Conclusions: Results from these studies demonstrate a novel developmental regulation of acellular cementum, wherein cementoblasts tune cementogenesis by modulating local levels of PPi, directing and regulating mineral apposition. These findings underscore developmental differences in acellular versus cellular cementum, and suggest new approaches for cementum regeneration

    Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii

    Get PDF
    Background: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientIfico e Tecnologico (CNPq)Coordenacao para Aperfeicoamento de Pessoal de Ensino Superior (CAPES)Fundo de Defesa da Citricultura (FUNDECITRUS

    Equine infectious anemia diagnosis by Pcr, Elisa and Agid in urban equids from Corumbá and Ladário, MS, Brazil.

    No full text
    Equine infectious anemia (EIA) is an equine disease caused by a retrovirus within the lentivirus genus. The equine infectious anemia virus (EIAV) is considered endemic in the Pantanal region and shows high prevalence among working equines and mules used in beef cattle ranches. In urban zones, there are many people who use equids for recyclable garbage collection as their main work

    Somatosensory evoked potentials reflect the upper limb motor performance in multiple sclerosis.

    No full text
    OBJECTIVE: The aim of this multicentric study was to multidimensionally evaluate the relationship among somatosensory evoked potentials (SEPs) parameters, patient's perspective and clinical measures of the upper limb impairment in patients with multiple sclerosis (MS). METHODS: We consecutively enrolled 39 MS patients. For median nerve SEPs we acquired the N9, P14, N20 responses and the N9-P14 and P14-N20 interpeak latencies on the dominant side. We also used a validated patient-oriented questionnaire (Disabilities of the Arm, Shoulder and Hand - DASH) and a test of dexterity quantification as the 9-Hole Peg Test (9-HPT). RESULTS: A significant longer time to complete the 9-HPT (p<0.00006) was observed in patients with abnormal SEPs. Patients with undetectable N20 or P14 responses performed the 9-HPT in a significant longer time than patients with detectable responses (p<0.0006 and p<0.001 respectively). Concerning the perspective of patient (evaluated with the DASH questionnaire) significant differences in patients with undetectable P14 response (p<0.01) were observed. CONCLUSIONS: Our data provide further information useful for interpretation of SEPs results, being the median nerve SEPs related to the upper limb performance in MS patients. SIGNIFICANCE: These data increase the significance of SEPs both in clinical practice and in experimental studies in MS

    Mineralization Defects In Cementum And Craniofacial Bone From Loss Of Bone Sialoprotein.

    No full text
    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in endochondral ossification in the cranial base, and craniofacial morphology was unaffected in Bsp(-/-) mice. These analyses confirm a critical role for BSP in processes of cementogenesis and intramembranous ossification of craniofacial bone, whereas endochondral ossification in the cranial base was minimally affected and dentinogenesis was normal in Bsp(-/-) molar teeth. Dissimilar effects of loss of BSP on mineralization of dental and craniofacial tissues suggest local differences in the role of BSP and/or yet to be defined interactions with site-specific factors.78150-16
    corecore