2,048 research outputs found
Reaction cross-section predictions for nucleon induced reactions
A microscopic calculation of the optical potential for nucleon-nucleus
scattering has been performed by explicitly coupling the elastic channel to all
the particle-hole (p-h) excitation states in the target and to all relevant
pickup channels. These p-h states may be regarded as doorway states through
which the flux flows to more complicated configurations, and to long-lived
compound nucleus resonances. We calculated the reaction cross sections for the
nucleon induced reactions on the targets Ca, Ni, Zr and
Sm using the QRPA description of target excitations, coupling to all
inelastic open channels, and coupling to all transfer channels corresponding to
the formation of a deuteron. The results of such calculations were compared to
predictions of a well-established optical potential and with experimental data,
reaching very good agreement. The inclusion of couplings to pickup channels
were an important contribution to the absorption. For the first time,
calculations of excitations account for all of the observed reaction
cross-sections, at least for incident energies above 10 MeV.Comment: 6 pages, 6 figures. Submitted to INPC 2010 Conference Proceeding
Towards an optical potential for rare-earths through coupled channels
The coupled-channel theory is a natural way of treating nonelastic channels,
in particular those arising from collective excitations, defined by nuclear
deformations. Proper treatment of such excitations is often essential to the
accurate description of reaction experimental data. Previous works have applied
different models to specific nuclei with the purpose of determining
angular-integrated cross sections. In this work, we present an extensive study
of the effects of collective couplings and nuclear deformations on integrated
cross sections as well as on angular distributions in a consistent manner for
neutron-induced reactions on nuclei in the rare-earth region. This specific
subset of the nuclide chart was chosen precisely because of a clear static
deformation pattern. We analyze the convergence of the coupled-channel
calculations regarding the number of states being explicitly coupled. Inspired
by the work done by Dietrich \emph{et al.}, a model for deforming the spherical
Koning-Delaroche optical potential as function of quadrupole and hexadecupole
deformations is also proposed. We demonstrate that the obtained results of
calculations for total, elastic and inelastic cross sections, as well as
elastic and inelastic angular distributions correspond to a remarkably good
agreement with experimental data for scattering energies above around a few
MeV.Comment: 7 pages, 6 figures. Submitted to the proceedings of the XXXVI
Reuni\~ao de Trabalho de F\'{\i}sica Nuclear no Brasil (XXXVI Brazilian
Workshop on Nuclear Physics), held in Maresias, S\~ao Paulo, Brazil in
September 2013, which should be published on AIP Conference Proceeding
Series. arXiv admin note: substantial text overlap with arXiv:1311.1115,
arXiv:1311.042
Stakeholder management: the new role of business diplomacy
Purpose: Stakeholder relations has been largely based upon a two-way public relations model. Along with this change, business diplomacy emerged as a proposal to renew stakeholder management. It is still uncertain if this proposal adds value to stakeholder management, which this study seeks to clarify. Design/methodology/approach: Corporate representatives in charge of stakeholder management were invited to participate in an online survey measuring both public relations and business diplomacy activities. With a sample of 104 companies, factorial analyses were conducted on public relations and business diplomacy activities comparing model quality. Findings: This study finds that public relations and business diplomacy activities share identity but not to the point of being fused and are thus different in nature. The best model showed three overarching functions (communication, influence and intelligence) implying that stakeholder management needs both public relations and business diplomacy. Research limitations/implications: Findings suggest both public relations and business diplomacy research should be included in advanced stakeholder management studies. Practical implications: By acknowledging the role that business diplomacy plays in stakeholder management, companies may place influence at the core of the renewed stakeholder management strategy to better deal with the increasingly complex business environment. Originality/value: This study adds clarity to the role of public relations and business diplomacy in stakeholder management based on actual activities developed in organizations and reveals the underlying dimensions of communication, influence and intelligence.info:eu-repo/semantics/acceptedVersio
Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature constrain wind power output and circulation cell size
The kinetic energy budget of the atmosphere's meridional circulation cells is
analytically assessed. In the upper atmosphere kinetic energy generation grows
with increasing surface temperature difference \$\Delta T_s\$ between the cold
and warm ends of a circulation cell; in the lower atmosphere it declines. A
requirement that kinetic energy generation is positive in the lower atmosphere
limits the poleward cell extension \$L\$ of Hadley cells via a relationship
between \$\Delta T_s\$ and surface pressure difference \$\Delta p_s\$: an upper
limit exists when \$\Delta p_s\$ does not grow with increasing \$\Delta T_s\$.
This pattern is demonstrated here using monthly data from MERRA re-analysis.
Kinetic energy generation along air streamlines in the boundary layer does not
exceed \$40\$~J~mol\$^{-1}\$; it declines with growing \$L\$ and reaches zero
for the largest observed \$L\$ at 2~km height. The limited meridional cell size
necessitates the appearance of heat pumps -- circulation cells with negative
work output where the low-level air moves towards colder areas. These cells
consume the positive work output of the heat engines -- cells where the
low-level air moves towards the warmer areas -- and can in theory drive the
global efficiency of atmospheric circulation down to zero. Relative
contributions of \$\Delta p_s\$ and \$\Delta T_s\$ to kinetic energy generation
are evaluated: \$\Delta T_s\$ dominates in the upper atmosphere, while \$\Delta
p_s\$ dominates in the lower. Analysis and empirical evidence indicate that the
net kinetic power output on Earth is dominated by surface pressure gradients,
with minor net kinetic energy generation in the upper atmosphere. The role of
condensation in generating surface pressure gradients is discussed.Comment: 26 pages, 9 figures, 2 tables; re-organized presentation, more
discussion and a new figure (Fig. 4) added; in Fig. 3 the previously
invisible dots (observations) can now be see
Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site
Forests around Manaus have staged the oldest and the longest forest-atmosphere CO2 exchange studies made anywhere in the Amazon. Since July 1999 the exchange of CO2, water, and energy, as well as weather variables, have been measured almost continuously over two forests, 11 km apart, in the Cuieiras reserve near Manaus, Brazil. This paper presents the sites and climatology of the region based upon the new data sets. The landscape consists of plateaus dissected by often waterlogged valleys, and the two sites differ in terms of the relative areas of those two landscape components represented in the tower footprints. The radiation and wind climate was similar to both towers. Generally, both the long-wave and short-wave radiation input was less in the wet than in the dry season. The energy balance closure was imperfect (on average 80%) in both towers, with little variation in energy partitioning between the wet and dry seasons; likely a result of anomalously high rainfall in the 1999 dry season. Fluxes of CO2 also showed little seasonal variation except for a slightly shorter daytime uptake duration and somewhat lower respiratory fluxes in the dry season. The net effect is one of lower daily net ecosystem exchange (NEE) in the dry season. The tower, which has less waterlogged valley areas in its footprint, measured a higher overall CO2 uptake rate. We found that on first sight, NEE is underestimated during calm nights, as was observed in many other tower sites before. However, a closer inspection of the diurnal variation of CO2 storage fluxes and NEE suggests that at least part of the nighttime deficits is recovered from either lateral influx of CO2 from valleys or outgassing of soil storage. Therefore there is a high uncertainty in the magnitude of nocturnal NEE, and consequently preliminary estimates of annual carbon uptake reflecting this range from 1 to 8 T ha-1 y-1, with an even higher upper range for the less waterlogged area. The high uptake rates are clearly unsustainable and call for further investigations into the integral carbon balance of Amazon landscapes
- …