91 research outputs found

    BxGe120/+ Clusters with x=1-4:Germanium Tubes Stabilized by Three and Four Boron Dopants

    Get PDF
    Some boron-doped germanium clusters BxGe12q with x = 1, 2, 3, and 4 and q = 0, 1 were designed as stabilized double ring tubes. While the B2Ge12 constitutes the smallest deltahedral germanium cluster, both B3Ge12+ and B4Ge12 clusters present us, for the first time, with an endohedral tubular motif in which either the B-3 or the B-4 cycle is encapsulated inside a Ge-12 hexagonal prism tube. Both B-3 and B-4 units thus satisfy a geometry requirement to create an endohedral structure within the Ge-12 double ring. Keeping their high symmetry, both B-3 and B-4 units generate delocalized bonds upon interaction with the Ge-12 tubular framework and thereby induce an aromatic character for the resulting B3Ge12+ and B4Ge12, respectively. Their aromaticity was probed by the magnetic responses of electron densities. Such a tubular aromaticity appears to greatly contribute to the high thermodynamic stability of the binary hexagonal germanium tubes

    The Diboson Excess: Experimental Situation and Classification of Explanations; A Les Houches Pre-Proceeding

    Get PDF
    We examine the `diboson' excess at ∌2\sim 2 TeV seen by the LHC experiments in various channels. We provide a comparison of the excess significances as a function of the mass of the tentative resonance and give the signal cross sections needed to explain the excesses. We also present a survey of available theoretical explanations of the resonance, classified in three main approaches. Beyond that, we discuss methods to verify the anomaly, determining the major properties of the various surpluses and exploring how different models can be discriminated. Finally, we give a tabular summary of the numerous explanations, presenting their main phenomenological features.Comment: 37 pages, 9 Figures, 1 Tabl

    Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%

    Get PDF
    Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime. Here we combine X-ray crystallography and excited-state calculations to rationalize these stepwise improvements. The enhancement originates from stabilization of the seventh ÎČ-strand and the strengthening of the sole chromophore-stabilizing hydrogen bond. The structural analysis highlighted one suboptimal internal residue, which was subjected to saturation mutagenesis combined with fluorescence lifetime-based screening. This resulted in mTurquoise2, a brighter variant with faster maturation, high photostability, longer mono-exponential lifetime and the highest quantum yield measured for a monomeric fluorescent protein. Together, these properties make mTurquoise2 the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein

    Les Houches 2015: Physics at TeV colliders - new physics working group report

    Get PDF
    We present the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 1-19 June, 2015). Our report includes new physics studies connected with the Higgs boson and its properties, direct search strategies, reinterpretation of the LHC results in the building of viable models and new computational tool developments. Important signatures for searches for natural new physics at the LHC and new assessments of the interplay between direct dark matter searches and the LHC are also considered.Comment: Proceedings of the New Physics Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 197 page

    Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice

    Get PDF
    Previously, we reported that besides retinal ganglion cell (RGC) spike, there is ~ 10 Hz oscillatory rhythmic activity in local field potential (LFP) in retinal degeneration model, rd1 mice. The more recently identified rd10 mice have a later onset and slower rate of photoreceptor degeneration than the rd1 mice, providing more therapeutic potential. In this study, before adapting rd10 mice as a new animal model for our electrical stimulation study, we investigated electrical characteristics of rd10 mice. From the raw waveform of recording using 8×8 microelectrode array (MEA) from in vitro-whole mount retina, RGC spikes and LFP were isolated by using different filter setting. Fourier transform was performed for detection of frequency of bursting RGC spikes and oscillatory field potential (OFP). In rd1 mice, ~10 Hz rhythmic burst of spontaneous RGC spikes is always phase-locked with the OFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, there is a strong phase-locking tendency between the spectral peak of bursting RGC spikes (~5 Hz) and the first peak of OFP (~5 Hz) across different age groups. But this phase-locking property is not robust as in rd1 retina, but maintains for a few seconds. Since rd1 and rd10 retina show phase-locking property at different frequency (~10 Hz vs. ~5 Hz), we expect different response patterns to electrical stimulus between rd1 and rd10 retina. Therefore, to extract optimal stimulation parameters in rd10 retina, first we might define selection criteria for responding rd10 ganglion cells to electrical stimulus

    Aberrant signaling in T-cell acute lymphoblastic leukemia: biological and therapeutic implications

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-beta, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    • 

    corecore