5,014 research outputs found

    Effect of sunlight shielding on leaf structure and amino acids concentration of light sensitive albino tea plant

    Get PDF
    Light sensitive albino tea cultivar ‘Jinguang’ (Camellia sinensis) which grows albinism leaf in yellow colour, results to high level of amino acids but low levels of photosynthetic pigments including chlorophylls, neoxanthin, violaxanthin, phytoxanthin and β-carotene when it is exposed to high sunlight illumination in the summer season. In this case, the chloroplasts showed partially lysed, with few thylakoids. The leaf albinism was reverted when the leaf was shielded from direct illumination of strong sunlight. It is considered that the blocked development of chloroplast and photosynthetic pigments in the albinism leaf inhibited the biosynthesis of leaf proteins, resulting in an accumulation of free amino acids.Keywords: Camellia sinensis, leaf albinism, light intensity, photosynthetic pigments, amino acids, chloroplastAfrican Journal of Biotechnology Vol. 12(36), pp. 5535-553

    Development and verification of cooperative adaptive cruise control via LTE-V

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordIn this paper, we present a testbed platform for realizing cooperative adaptive cruise control (CACC) enabled by LTE-V (LTE-vehicle). The platform is developed on a platoon of vehicles, each of which is equipped with a suite of on-board sensing and computing devices for environment perception and automated vehicle control, as well as an LTE-V transceiver for high-performance vehicle-to-vehicle (V2V) communication. The hardware architecture and software architecture, especially the perception and control methods, of the platform are described. Field experiments in different road conditions are conducted to verify the feasibility of our platform. The results also show the potential of V2V communications via LTE-V in terms of improving the sensing capability of individual vehicle’s on-board sensors.National Natural Science Foundation of ChinaFundamental Research Funds for the Central UniversitiesShanghai Yangfan ProgramEuropean Union Horizon 202

    Two-dimensional elemental operator for modeling the vectorial hysteresis of soft magnetic composite material

    Full text link
    © 2015 IEEE. This paper presents a two-dimensional elemental operator with biaxial anisotropy based on the physical mechanisms of the cubic textured magnetic materials, and deduces an analytical expression of the direct relationship between magnetic field strength H and magnetization M for a single elemental operator by the partial approximate substitutions. To verify the proposed model, the magnetic hysteresis of a soft magnetic composite material SOMALOYTM 500 under alternating excitations was simulated and compared with the experimental results obtained by a 3D magnetic property tester. The results suggest that the proposed approach can be a useful tool in the modeling of vectorial magnetic hysteresis and the calculation of iron loss in practical engineering electromagnetic field analysis

    Building an Improved Internet of Things Smart Sensor Network Based on a Three-Phase Methodology

    Full text link
    © 2013 IEEE. In recent years, the Internet of Things (IoT) has allowed the easy, intelligent, and efficient connection of many devices used in daily life by means of numerous smart sensors which communicate with each other using wireless signals. The rapid development of the IoT has been a result of recent advances in sensing technology. This paper proposes a three-phase methodology to improve the quality of experience for IoT system technologies. The proposed method employs the concepts of simple routing and two well-known multi-criteria decision-making method (MCDM) techniques: The Analytic Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). First, all simple routings are obtained using the proposed depth-first search technology (DFS). AHP is applied to analyze the structure of the problem and to obtain weights for various selected criteria in the second phase. In the third phase, TOPSIS is utilized to rank the simple routings, which are simple paths. A case study example is provided to demonstrate the proposed three-phase methodology. The results from the numerical experiments show that the proposed methodology can successfully achieve the aim of this paper

    Modeling the stress dependence of magnetic hysteresis based on Stoner-Wohlfarth theory

    Full text link
    © 2015 IEEE. This paper presents an improved approach for simulating magnetic hysteresis, which takes into account the effect of applied stress, based on an extended Stoner-Wohlfarth (S-W) model. Meanwhile, the S-W asteroid rotates and shrinks, and the stable direction of magnetization of the particle can be calculated from the new energy minimum conditions. This developed model is applied to analyze the magnetic hysteresis phenomenon of a soft magnetic composite (SMC) material under different compaction process, and the results of simulations are in good quantitative agreement with experimental data

    Pre-mRNA Splicing Modulation by Antisense Oligonucleotides

    Get PDF
    Pre-mRNA splicing, a dynamic process of intron removal and exon joining, is governed by a combinatorial control exerted by overlapping cis-elements that are unique to each exon and its flanking intronic sequences. Splicing cis-elements are usually 4-to-8-nucleotide-long linear motifs that provide binding sites for specific proteins. Pre-mRNA splicing is also influenced by secondary and higher order RNA structures that affect accessibility of splicing cis-elements. Antisense oligonucleotides (ASOs) that block splicing cis-elements and/or affect RNA structure have been shown to modulate splicing in vivo. Therefore, ASO-based strategies have emerged as a powerful tool for therapeutic manipulation of splicing in pathological conditions. Here we describe an ASO-based approach to increase the production of the full-length SMN2 mRNA in spinal muscular atrophy patient cells

    Spectropolarimetry of Supernovae

    Full text link
    Overwhelming evidence has accumulated in recent years that supernova explosions are intrinsically 3-dimensional phenomena with significant departures from spherical symmetry. We review the evidence derived from spectropolarimetry that has established several key results: virtually all supernovae are significantly aspherical near maximum light; core-collapse supernovae behave differently than thermonuclear (Type Ia) supernovae; the asphericity of core-collapse supernovae is stronger in the inner layers showing that the explosion process itself is strongly aspherical; core-collapse supernovae tend to establish a preferred direction of asymmetry; the asphericity is stronger in the outer layers of thermonuclear supernovae providing constraints on the burning process. We emphasize the utility of the Q/U plane as a diagnostic tool and revisit SN 1987A and SN 1993J in a contemporary context. An axially-symmetric geometry can explain many basic features of core-collapse supernovae, but significant departures from axial symmetry are needed to explain most events. We introduce a spectropolarimetry type to classify the range of behavior observed in polarized supernovae. Understanding asymmetries in supernovae is important for phenomena as diverse as the origins of gamma-ray bursts and the cosmological applications of Type Ia supernovae in studies of the dark energy content of the universe.Comment: Draft of Annual Review article prior to final copy editing; 85 pages, 13 figures, 1 tabl

    Energy loss in perturbative QCD

    Get PDF
    We review the properties of energetic parton propagation in hot or cold QCD matter, as obtained in recent works. Advances in understanding the energy loss - collisional and radiative - are summarized, with emphasis on the latter: it features very interesting properties which may help to detect the quark-gluon plasma produced in heavy ion collisions. We describe two different theoretical approaches, which lead to the same radiated gluon energy spectrum. The case of a longitudinally expanding QCD plasma is investigated. The energy lost by a jet with given opening angle is calculated in view of making predictions for the suppression (quenching) of hard jet production. Phenomenological implications for the difference between hot and cold matter are discussed. Numerical estimates of the loss suggest that it may be significantly enhanced in hot compared to cold matter.Comment: 49 pages latex file with 11 embedded PS figures. Uses ar.sty (included), one equation revised. submitted to Annual Review of Nuclear and Particle Scienc

    E1-Like Activating Enzyme Atg7 Is Preferentially Sequestered into p62 Aggregates via Its Interaction with LC3-I

    Get PDF
    p62 is constitutively degraded by autophagy via its interaction with LC3. However, the interaction of p62 with LC3 species in the context of the LC3 lipidation process is not specified. Further, the p62-mediated protein aggregation's effect on autophagy is unclear. We systemically analyzed the interactions of p62 with all known Atg proteins involved in LC3 lipidation. We find that p62 does not interact with LC3 at the stages when it is being processed by Atg4B or when it is complexed or conjugated with Atg3. p62 does interact with LC3-I and LC3-I:Atg7 complex and is preferentially recruited by LC3-II species under autophagic stimulation. Given that Atg4B, Atg3 and LC3-Atg3 are indispensable for LC3-II conversion, our study reveals a protective mechanism for Atg4B, Atg3 and LC3-Atg3 conjugate from being inappropriately sequestered into p62 aggregates. Our findings imply that p62 could potentially impair autophagy by negatively affecting LC3 lipidation and contribute to the development of protein aggregate diseases. © 2013 Gao et al
    • …
    corecore