6 research outputs found

    A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern Ecuador

    Get PDF
    We present a first comparison of patterns of alpha and beta diversity of ferns, mosses, liverworts and macrolichens in neotropical montane rainforests, and explore the question whether specific taxa may be used as surrogates for others. In three localities in southern Ecuador, we surveyed terrestrial and epiphytic species assemblages in ridge and slope forests in 28 plots of 400 m² each. The epiphytic habitat was significantly richer in ferns, liverworts, and macrolichens than the terrestrial habitat; mosses, however, were primarily terrestrial. Alpha diversity of ferns and of liverworts was congruent in both habitats. Mosses were similar to ferns and liverworts only in the epiphytic habitat. Macrolichens did not share patterns of alpha diversity with any other group. Beta diversity of ferns, mosses and liverworts (lichens excluded due to low species richness) was similar in the terrestrial habitat, but not in the epiphytic habitat. Our results demonstrate that patterns of alpha diversity of the studied taxa cannot be used to predict patterns of beta diversity. Moreover, diversity patterns observed in epiphytes are different from terrestrial plants. We noted a general coincidence in species patterns of liverworts and ferns. Diversity patterns of macrolichens, in contrast, were completely independent from any other taxonomic group studied

    Global effects of land use on local terrestrial biodiversity

    Get PDF
    Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    No full text
    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity
    corecore