33 research outputs found

    Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rice blast is the most threatening disease to cultivated rice. <it>Magnaporthe oryzae</it>, its causal agent, is likely to encounter environmental challenges during invasive growth in its host plants that require shifts in gene expression to establish a compatible interaction. Here, we tested the hypothesis that gene expression patterns during <it>in planta </it>invasive growth are similar to <it>in vitro </it>stress conditions, such as nutrient limitation, temperature up shift and oxidative stress, and determined which condition most closely mimicked that of <it>in planta </it>invasive growth. Gene expression data were collected from these <it>in vitro </it>experiments and compared to fungal gene expression during the invasive growth phase at 72 hours post-inoculation in compatible interactions on two grass hosts, rice and barley.</p> <p>Results</p> <p>We identified 4,973 genes that were differentially expressed in at least one of the <it>in planta </it>and <it>in vitro </it>stress conditions when compared to fungal mycelia grown in complete medium, which was used as reference. From those genes, 1,909 showed similar expression patterns between at least one of the <it>in vitro </it>stresses and rice and/or barley. Hierarchical clustering of these 1,909 genes showed three major clusters in which <it>in planta </it>conditions closely grouped with the nutrient starvation conditions. Out of these 1,909 genes, 55 genes and 129 genes were induced and repressed in all treatments, respectively. Functional categorization of the 55 induced genes revealed that most were either related to carbon metabolism, membrane proteins, or were involved in oxidoreduction reactions. The 129 repressed genes showed putative roles in vesicle trafficking, signal transduction, nitrogen metabolism, or molecular transport.</p> <p>Conclusions</p> <p>These findings suggest that <it>M. oryzae </it>is likely primarily coping with nutrient-limited environments at the invasive growth stage 72 hours post-inoculation, and not with oxidative or temperature stresses.</p

    Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae.

    Get PDF
    addresses: College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.notes: PMCID: PMC3276559The rice blast fungus Magnaporthe oryzae is one of the most significant pathogens affecting global food security. To cause rice blast disease the fungus elaborates a specialised infection structure called an appressorium. Here, we report genome wide transcriptional profile analysis of appressorium development using next generation sequencing (NGS). We performed both RNA-Seq and High-Throughput SuperSAGE analysis to compare the utility of these procedures for identifying differential gene expression in M. oryzae. We then analysed global patterns of gene expression during appressorium development. We show evidence for large-scale gene expression changes, highlighting the role of autophagy, lipid metabolism and melanin biosynthesis in appressorium differentiation. We reveal the role of the Pmk1 MAP kinase as a key global regulator of appressorium-associated gene expression. We also provide evidence for differential expression of transporter-encoding gene families and specific high level expression of genes involved in quinate uptake and utilization, consistent with pathogen-mediated perturbation of host metabolism during plant infection. When considered together, these data provide a comprehensive high-resolution analysis of gene expression changes associated with cellular differentiation that will provide a key resource for understanding the biology of rice blast disease

    Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity

    Get PDF
    Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant–pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA–dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA–dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens

    Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis

    Get PDF
    Aspergillus fumigatus is a common mould whose spores are a component of the normal airborne flora. Immune dysfunction permits developmental growth of inhaled spores in the human lung causing aspergillosis, a significant threat to human health in the form of allergic, and life-threatening invasive infections. The success of A. fumigatus as a pathogen is unique among close phylogenetic relatives and is poorly characterised at the molecular level. Recent genome sequencing of several Aspergillus species provides an exceptional opportunity to analyse fungal virulence attributes within a genomic and evolutionary context. To identify genes preferentially expressed during adaptation to the mammalian host niche, we generated multiple gene expression profiles from minute samplings of A. fumigatus germlings during initiation of murine infection. They reveal a highly co-ordinated A. fumigatus gene expression programme, governing metabolic and physiological adaptation, which allows the organism to prosper within the mammalian niche. As functions of phylogenetic conservation and genetic locus, 28% and 30%, respectively, of the A. fumigatus subtelomeric and lineage-specific gene repertoires are induced relative to laboratory culture, and physically clustered genes including loci directing pseurotin, gliotoxin and siderophore biosyntheses are a prominent feature. Locationally biased A. fumigatus gene expression is not prompted by in vitro iron limitation, acid, alkaline, anaerobic or oxidative stress. However, subtelomeric gene expression is favoured following ex vivo neutrophil exposure and in comparative analyses of richly and poorly nourished laboratory cultured germlings. We found remarkable concordance between the A. fumigatus host-adaptation transcriptome and those resulting from in vitro iron depletion, alkaline shift, nitrogen starvation and loss of the methyltransferase LaeA. This first transcriptional snapshot of a fungal genome during initiation of mammalian infection provides the global perspective required to direct much-needed diagnostic and therapeutic strategies and reveals genome organisation and subtelomeric diversity as potential driving forces in the evolution of pathogenicity in the genus Aspergillus

    Timing of Plant Immune Responses by a Central Circadian Regulator

    No full text
    The principal immune mechanism against biotrophic pathogens in plants is the resistance (R)-gene-mediated defence1. It was proposed to share components with the broad-spectrum basal defence machinery2. However, the underlying molecular mechanism is largely unknown. Here we report the identification of novel genes involved in R-gene-mediated resistance against downy mildew in Arabidopsis and their regulatory control by the circadian regulator, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1). Numerical clustering based on phenotypes of these gene mutants revealed that programmed cell death (PCD) is the major contributor to resistance. Mutants compromised in the R-gene-mediated PCD were also defective in basal resistance, establishing an interconnection between these two distinct defence mechanisms. Surprisingly, we found that these new defence genes are under circadian control by CCA1, allowing plants to ‘anticipate’ infection at dawn when the pathogen normally disperses the spores and time immune responses according to the perception of different pathogenic signals upon infection. Temporal control of the defence genes by CCA1 differentiates their involvement in basal and R-gene-mediated defence. Our study has revealed a key functional link between the circadian clock and plant immunit
    corecore