55 research outputs found
Quasistationary Stabilization of the Decay of a Weakly-Bound Level and Its Breakdown in a Strong Laser Field
Although it was pointed out about 10 years ago that an atomic decay rate might decrease as the intensity of a high-frequency laser field increases, there still does not exist any complete understanding of either the physical origin of this interesting nonlinear phenomenon or its dependence on the atomic and field parameters. Essentially, the problem consists in that the phenomenon requires a major modification of the standard picture of photoeffect in a strong laser field. In Reference #1 the origin of this stabilization is related to a particular distortion of an atomic potential by an intense monochromatic high-frequency field. This phenomenon is called adiabatic or quasistationary stabilization (QS). For the case of Rydberg levels, another (interference) mechanism of QS was suggested. Both theories predict an unlimited decrease of the decay rate (or of the width Γ of an atomic level, i.e., of the imaginary part of the complex quasienergy, ε = Re ε – iΓ/2 ) as the laser field amplitude increases. In recent years the idea of “dynamic stabilization” (DS) has become popular. It originates from the pulse form of a laser field rather than from any intrinsic property of the atom in a strong monochromatic field. Within this model the numerous simulations point also to the possibility of a breakdown of stabilization for the case of superintense short laser pulses. However, a recent paper, using the quasistationary quasienergy states (QQES) as an adiabatic basis for the laser pulse has shown that DS has the same (quasistationary) origin as QS. Finally, a number of authors deny the existence of stabilization, in particular, of QS for ionization from a short-range potential and of DS in pulsed fields. Obviously, these controversies and ambiguities are caused by the complexity of the numerical solution of the Cauchy problem for the time-dependent Schrödinger equation in a strong field and by the absence of analyses for exactly solvable analytical models. We analyze the exactly solvable problem of an electron in a three-dimensional, short-range potential and consider the two questions: does a QS-like behavior of the decay rate exist for this model, and, if so, is there an upper intensity limit of the QS regime
Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range
Background: The family Mesoniviridae (order Nidovirales) comprises of a group of positive-sense, single-stranded RNA ([+]ssRNA) viruses isolated from mosquitoes. Findings. Thirteen novel insect-specific virus isolates were obtained from mosquitoes collected in Indonesia, Thailand and the USA. By electron microscopy, the virions appeared as spherical particles with a diameter of ∼50 nm. Their 20,129 nt to 20,777 nt genomes consist of positive-sense, single-stranded RNA with a poly-A tail. Four isolates from Houston, Texas, and one isolate from Java, Indonesia, were identified as variants of the species Alphamesonivirus-1 which also includes Nam Dinh virus (NDiV) from Vietnam and Cavally virus (CavV) from Côte d'Ivoire. The eight other isolates were identified as variants of three new mesoniviruses, based on genome organization and pairwise evolutionary distances: Karang Sari virus (KSaV) from Java, Bontag Baru virus (BBaV) from Java and Kalimantan, and Kamphaeng Phet virus (KPhV) from Thailand. In comparison with NDiV, the three new mesoniviruses each contained a long insertion (180 - 588 nt) of unknown function in the 5' region of ORF1a, which accounted for much of the difference in genome size. The insertions contained various short imperfect repeats and may have arisen by recombination or sequence duplication. Conclusions: In summary, based on their genome organizations and phylogenetic relationships, thirteen new viruses were identified as members of the family Mesoniviridae, order Nidovirales. Species demarcation criteria employed previously for mesoniviruses would place five of these isolates in the same species as NDiV and CavV (Alphamesonivirus-1) and the other eight isolates would represent three new mesonivirus species (Alphamesonivirus-5, Alphamesonivirus-6 and Alphamesonivirus-7). The observed spatiotemporal distribution over widespread geographic regions and broad species host range in mosquitoes suggests that mesoniviruses may be common in mosquito populations worldwide. © 2014 Vasilakis et al.; licensee BioMed Central Ltd
The deuteron: structure and form factors
A brief review of the history of the discovery of the deuteron in provided.
The current status of both experiment and theory for the elastic electron
scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic
Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis
Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base
Multi-functionality of the few: Current and past uses of wild plants for food and healing in LiubaÅ\u84 region, Belarus
Background: This study examined the use of wild plants in the food, medicinal and veterinary areas within a small territory limited to one village council in the LiubaÅ\u84 district of Belarus. The objectives of the research were to document the current and past uses of wild plants in this region for food and human/animal medication; to analyse the food, medicinal and veterinary areas in the context of wild plants; and to qualitatively compare the results with relevant publications concerning the wild food plants of Belarus. Methods: Fieldwork was carried out as a practical part of a development cooperation project in May 2016 in 11 villages of the LiubaÅ\u84 district. One hundred thirty-four respondents were selected randomly. Information about local uses of wild plants was obtained via semi-structured interviews and the folk-history method. Interview records were digitalized and the data structured in Detailed Use Records (DUR), which were divided into food, medicinal and veterinary areas and then analysed to ascertain local perceptions. Results: A total of 2252 DUR of wild plants were recorded. Eighty-eight wild plant taxa belonging to 45 plant families were used across all three areas. Of these, 58 taxa were used in the food, 74 in the medicinal and 23 in the veterinary areas. A relatively high percentage of the taxa were used in both the food and medicinal areas (55%) and an even greater percentage in both the medicinal and veterinary areas (87%). Comparison with earlier research on wild food plants shows the considerable difference among seldom-mentioned taxa or uses, showing possible regional differences despite the homogenization of the population during the Soviet era. Conclusions: As the majority of taxa with overlapping uses belonged to the most utilized plants, there appears to be clear a tendency to use plants in several different areas once they are brought into the home. This may be due to the need to maximize the versatility of limited resources. While the number of wild taxa used is relatively high, the mean number of taxa used per person is quite low, which indicates the relatively minor importance of wild plants in the respective areas in the study region. The low importance of snacks signals that unintended contact with nature has been lost
Changes to the Fossil Record of Insects through Fifteen Years of Discovery
The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well
Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human
Different isoenzymes of pyruvate dehydrogenase kinase (PDK) inhibit the mitochondrial pyruvate dehydrogenase complex by phosphorylation of the E1α subunit, thus contributing to the regulation of glucose metabolism. By positional cloning in the 7q21.3-q22.1 region linked with insulin resistance and non-insulin-dependent diabetes mellitus in the Pima Indians, we identified a gene encoding an additional human PDK isoform, as evidenced by its amino acid sequence identity (>65%) with other mammalian PDKs, and confirmed by biochemical analyses of the recombinant protein. We performed detailed comparative analyses of the gene, termed PDK4, in insulin-resistant and insulin-sensitive Pima Indians, and detected five DNA variants with comparable frequencies in both subject groups. Using quantitative reverse transcription polymerase chain reaction, we found that the variants identified in the promoter and 5'-untranslated region did not correlate with differences in mRNA level in skeletal muscle and adipose tissue. We conclude that alterations in PDK4 are unlikely to be the molecular basis underlying the observed linkage at 7q21.3-q22.1 in the Pima Indians. Information about the genomic organization and promoter sequences of PDK4 will be useful in studies of other members of this family of mitochondrial protein kinases that are important for the regulation of glucose metabolism.link_to_OA_fulltex
Path-Dependent Development of Mass Housing in Moscow, Russia
Since the 1950s, Moscow’s housing development has been underlined by modernist planning schemes. From the 20th to 21st centuries, the quality and appearance of apartment buildings changed, but housing estates designed as coherent neighbourhoods not only remain the principal type of housing organization but are still being constructed in Moscow and its suburbs. Though the concept itself has not been challenged by policy-makers and planners, by the end of the 20th century it became apparent that early housing estates have become a problem due to poor quality of construction. In 2017, the Moscow Government announced a highly controversial program suggesting the demolition of housing estates built between the 1950s and 1960s. Our contribution analyzes the history of housing estates development in Moscow aiming to understand what has led to the adoption of the 2017 “renovation” program. If this program ends up being fully implemented, along with planned renovation of former industrial areas, the cityscape of Russia’s capital will be completely redefined
- …