18 research outputs found

    Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2).

    No full text
    Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-alpha subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 A resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded beta-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease

    Probing molecular mechanisms of M13 bacteriophage adhesion

    No full text
    M13 bacteriophages can provide a versatile platform for nanobiotechnology because of their unique biological and physicochemical properties. Polypeptides on their surfaces can be finely tuned on demand through genetic engineering, enabling tailored assembly of multiple functional components through specific interactions. Their versatility has been demonstrated by synthesizing various unprecedented hybrid materials for energy storage, biosensing, and catalysis. Here we select a specific type of genetically engineered M13 bacteriophage (DSPH) to investigate the origin of interactions. The interaction forces between the phage-coated surface and five different functionalized self-assembled monolayers are directly measured using a surface forces apparatus. We confirm that the phages have strong adhesion energies in acidic environments due to ??-?? stacking and hydrophobic interactions, while hydrogen bonding interactions remain relatively weak. These results provide quantitative and qualitative information of the molecular interaction mechanisms of DSPH phages, which can be utilized as a database of the bacteriophage interactions
    corecore