1,910 research outputs found

    Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity

    Get PDF
    We demonstrate, at room temperature, the strong coupling of the fundamental and non-uniform magnetostatic modes of an yttrium iron garnet (YIG) ferrimagnetic sphere to the electromagnetic modes of a co-axial cavity. The well-de ned eld pro le within the cavity yields a speci c coupling strength for each magnetostatic mode. We experimentally measure the coupling strength for the di erent magnetostatic modes and, by calculating the expected coupling strengths, are able to identify the modes themselves.We would like to acknowledge support from Hitachi Cambridge Laboratory, and EPSRC Grant No. EP/K027018/1. A.J.F. is supported by a Hitachi Research fellowship.This is the author accepted manuscript. The final version is available from AIP at http://scitation.aip.org/content/aip/journal/jap/117/5/10.1063/1.4907694#fulltextAbstract

    Cavity-mediated coherent coupling of magnetic moments

    Get PDF
    We demonstrate the long range strong coupling of magnetostatic modes in spatially separated ferromagnets mediated by a microwave frequency cavity. Two spheres of yttrium iron garnet are embedded in the cavity and their magnetostatic modes probed using a dispersive measurement technique. We find they are strongly coupled to each other even when detuned from the cavity modes, and investigate the dependence of the magnet-magnet coupling on the cavity detuning. Dark states of the coupled magnetostatic modes of the system are observed, and ascribed to mismatches between the symmetries of the modes and the drive field.We would like to acknowledge support from Hitachi Cambridge Laboratory, EPSRC Grant No. EP/K027018/1 and ERC Grant No. 648613. A.J.F. is supported by a Hitachi Research Fellowship. A.C.D. is supported by the ARC via the Centre of Excellence in Engineered Quantum Systems (EQuS), Project No. CE110001013.This is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevA.93.02180

    The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species.

    Get PDF
    Published onlineJOURNAL ARTICLEMethyl-aminolevulinate-based photodynamic therapy (MAL-PDT) is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX), have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431) occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin) and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time) the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap.We thank Professor Robert Hider, King's College London, for providing the iron chelating agent (CP94), and Drs Paul Eggleton and Jo Tarr (University of Exeter Medical School) for their assistance with the flow cytometry analysis. The Duchy Health Charity Ltd (DCH05-07), Peninsula Medical School and DDRC Healthcare (GD100015-122) are thanked for financial support. PGW and DCJF acknowledge financial support from the European Cooperation in Science and Technology, Belgium (COST Action BM1203/EU-ROS)

    Key traveller groups of relevance to spatial malaria transmission: a survey of movement patterns in four sub-Saharan African countries

    Get PDF
    Background: As malaria prevalence declines in many parts of the world due to widescale control efforts and as drug-resistant parasites begin to emerge, a quantitative understanding of human movement is becoming increasingly relevant to malaria control. However, despite its importance, significant knowledge gaps remain regarding human movement, particularly in sub-Saharan Africa. Methods: A quantitative survey of human movement patterns was conducted in four countries in sub-Saharan Africa: Mali, Burkina Faso, Zambia, and Tanzania, with three to five survey locations chosen in each country. Questions were included on demographic and trip details, malaria risk behaviour, children accompanying travellers, and mobile phone usage to enable phone signal data to be better correlated with movement. A total of 4352 individuals were interviewed and 6411 trips recorded. Results: A cluster analysis of trips highlighted two distinct traveller groups of relevance to malaria transmission: women travelling with children (in all four countries) and youth workers (in Mali). Women travelling with children were more likely to travel to areas of relatively high malaria prevalence in Mali (OR = 4.46, 95 % CI = 3.42–5.83), Burkina Faso (OR = 1.58, 95 % CI = 1.23–1.58), Zambia (OR = 1.50, 95 % CI = 1.20–1.89), and Tanzania (OR = 2.28, 95 % CI = 1.71–3.05) compared to other travellers. They were also more likely to own bed nets in Burkina Faso (OR = 1.77, 95 % CI = 1.25–2.53) and Zambia (OR = 1.74, 95 % CI = 1.34 2.27), and less likely to own a mobile phone in Mali (OR = 0.50, 95 % CI = 0.39–0.65), Burkina Faso (OR = 0.39, 95 % CI = 0.30–0.52), and Zambia (OR = 0.60, 95 % CI = 0.47–0.76). Malian youth workers were more likely to travel to areas of relatively high malaria prevalence (OR = 23, 95 % CI = 17–31) and for longer durations (mean of 70 days cf 21 days, p < 0.001) compared to other travellers. Conclusions: Women travelling with children were a remarkably consistent traveller group across all four countries surveyed. They are expected to contribute greatly towards spatial malaria transmission because the children they travel with tend to have high parasite prevalence. Youth workers were a significant traveller group in Mali and are expected to contribute greatly to spatial malaria transmission because their movements correlate with seasonal rains and hence peak mosquito densities. Interventions aimed at interrupting spatial transmission of parasites should consider these traveller groups

    Experimental observation of the breaking and recombination of single Cooper pairs

    Get PDF
    We observe the real-time breaking of single Cooper pairs by monitoring the radio-frequency impedance of a superconducting double quantum dot. The Cooper pair breaking rate in the microscale islands of our device decreases as temperature is reduced, saturating at 2 kHz for temperatures beneath 100 mK. In addition, we measure in real-time the quasiparticle recombination into Cooper pairs. Analysis of the recombination rates shows that, in contrast to bulk lms, a multi-stage recombination pathway is followed.A.J.F. would like to acknowledge the Hitachi Research fellowship, support from Hitachi Cambridge Laboratory and support from the EPSRC grant EP/H016872/1. B.W.L. is supported by a Royal Society University Research Fellowship. F.A.P. would like to thank the Leverhulme Trust for fi nancial support.This is the author accepted manuscript. The final version is available from APS via http://dx.doi.org/10.1103/PhysRevB.90.14050

    Advantages and Limitations of Commercially Available Electrocuting Grids for Studying Mosquito Behaviour.

    Get PDF
    Mosquito feeding behaviour plays a major role in determining malaria transmission intensity and the impact of specific prevention measures. Human Landing Catch (HLC) is currently the only method that can directly and consistently measure the biting rates of anthropophagic mosquitoes, both indoors and outdoors. However, this method exposes the participant to mosquito-borne pathogens, therefore new exposure-free methods are needed to replace it. Commercially available electrocuting grids (EGs) were evaluated as an alternative to HLC using a Latin Square experimental design in Dar es Salaam, Tanzania. Both HLC and EGs were used to estimate the proportion of human exposure to mosquitoes occurring indoors (Ο€i), as well as its two underlying parameters: the proportion of mosquitoes caught indoors (Pi) and the proportion of mosquitoes caught between the first and last hour when most people are indoors (Pfl). HLC and EGs methods accounted for 69% and 31% of the total number of female mosquitoes caught respectively and both methods caught more mosquitoes outdoors than indoors. Results from the gold standard HLC suggest that An. gambiae s.s. in Dar es Salaam is neither exophagic nor endophagic (Piβ€‰β‰ˆβ€‰0.5), whereas An. arabiensis is exophagic (Pi < < 0.5). Both species prefer to feed after 10 pm when most people are indoors (Pfl > >0.5). EGs yielded estimates of Pi for An. gambiae s.s., An. arabiensis and An. coustani, that were approximately equivalent to those with HLC but significantly underestimated Pfl for An. gambiae s.s. and An. coustani. The relative sampling sensitivity of EGs declined over the course of the night (p ≀ 0.001) for all mosquito taxa except An. arabiensis. Commercial EGs sample human-seeking mosquitoes with high sensitivity both indoors and outdoors and accurately measure the propensity of Anopheles malaria vectors to bite indoors rather than outdoors. However, further modifications are needed to stabilize sampling sensitivity over a full nocturnal cycle so that they can be used to survey patterns of human exposure to mosquitoes

    Microwave irradiation and quasiparticles in a superconducting double dot

    Get PDF
    Β© 2017 American Physical Society. We study the interaction of the charge states of a superconducting double dot, comprising two superconducting islands coupled by a Josephson junction, with microwaves between 2 and 55 GHz. We observe resonant transitions between even-parity charge states at relatively low frequencies and breaking of Cooper pairs under higher-frequency irradiation, allowing our device to act as a click detector for microwave photons. By applying a magnetic field and tuning the pair-breaking energy, we perform spectroscopy on the environment in our cryostat and determine the temperature of a nonequilibrium photon bath. Finally, we exploit the band structure of our device to break Cooper pairs dependent on the symmetry of the initial Cooper pair state

    Early Potent Protection against Heterologous SIVsmE660 Challenge Following Live Attenuated SIV Vaccination in Mauritian Cynomolgus Macaques

    Get PDF
    Background: Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings: Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5Ξ± allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5Ξ± polymorphism and study outcome was identified. Conclusion/Significance: This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system
    • …
    corecore