20 research outputs found

    Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics.

    Get PDF
    Microtubule dynamics and polarity stem from the polymerization of αβ-tubulin heterodimers. Five conserved tubulin cofactors/chaperones and the Arl2 GTPase regulate α- and β-tubulin assembly into heterodimers and maintain the soluble tubulin pool in the cytoplasm, but their physical mechanisms are unknown. Here, we reconstitute a core tubulin chaperone consisting of tubulin cofactors TBCD, TBCE, and Arl2, and reveal a cage-like structure for regulating αβ-tubulin. Biochemical assays and electron microscopy structures of multiple intermediates show the sequential binding of αβ-tubulin dimer followed by tubulin cofactor TBCC onto this chaperone, forming a ternary complex in which Arl2 GTP hydrolysis is activated to alter αβ-tubulin conformation. A GTP-state locked Arl2 mutant inhibits ternary complex dissociation in vitro and causes severe defects in microtubule dynamics in vivo. Our studies suggest a revised paradigm for tubulin cofactors and Arl2 functions as a catalytic chaperone that regulates soluble αβ-tubulin assembly and maintenance to support microtubule dynamics

    Cyprinid herpesvirus-2 (CyHV-2): a comprehensive review

    Get PDF
    Cyprinid herpesvirus-2 (CyHV-2) is a linear double-stranded DNA virus in the genus Cyprinivirus of family Alloherpesviridae. The virus is known to be highly pathogenic to ornamental goldfish (Carassius auratus), crucian carp (C. carassius) and Gibel carp (C. auratus gibelio), and also to the hybrids of goldfish and other carps. Cyprinid herpesvirus-2, having the smallest genome (290.3 kb) among Cyprinivirus, causes herpesviral hematopoietic necrosis disease (HVHND) that results in huge economic losses in aquaculture industry as the disease can cause high mortality (50–100%) among the affected fish. The disease was initially reported as the cause of epizootics in juvenile goldfish of Japan during 1992 and 1993. To date, this disease has been reported around the world including Europe, North America, Oceania and Asia. Huge economic losses due to the CyHV-2 infection among cultured gibel carp in China, during 2011–2012, mass mortality in crucian carp during 2012 in Italy, 95% mortality in goldfish during 2014 in France, 85% mortality in goldfish during 2016 in Poland had been reported. Strategies for controlling the spread of CyHV-2 are thus urgently required to limit economic damage. Furthermore, the review will shed light on lacunae in current knowledge as well as on the perspectives that merits further investigations on CyHV-2 research. The paper forms the first comprehensive overview of CyHV-2 causing a serious economically significant fish disease and, will be helpful for the researchers to get all related information from a single manuscript

    Natural outbreak of infectious spleen and kidney necrosis virus threatens wild pearlspot, Etroplus suratensis in Peechi Dam in the Western Ghats biodiversity hotspot, India

    No full text
    A large-scale mortality of pearlspot, Etroplus suratensis was reported from Peechi Dam, an artificial tropical lake made for irrigation and drinking water supply in Kerala, India during 2018. This dam is located in the premises of Western Ghats, recognized as one of the biodiversity hotspots of the world. The objective of this study was to identify the aetiological agent of this large-scale mortality of E. suratensis by systematic diagnostic investigation and identification of the pathogen. Virus isolation was carried out on a species-specific pearlspot fin (PSF) cell line. Infected PSF cells showed cytopathic effects (CPEs) like cell shrinkage, rounding, enlargement, clustering, and subsequent detachment of cells with a high viral titre of 106⋅95 TCID50 ml−1 at 8 days post-inoculation (dpi). Histopathological examination of the fish showed the presence of numerous abnormal enlarged basophilic cells and intracytoplasmic eosinophilic inclusions in the liver. Moreover, transmission electron microscopy (TEM) analysis revealed the presence of large numbers of 125–132 nm viral particles in the spleen tissues. PCR amplification and phylogenetic analysis of the major capsid protein (MCP) gene sequence confirmed that the causative agent was infectious spleen and kidney necrosis virus (ISKNV) of the genus Megalocytivirus. The experimental infection recorded 86.7 ± 2.7% mortality in the E. suratensis (body weight 11.01 ± 2.7 g; body length 8.01 ± 2.23 cm) injected with 1 × 104⋅25 TCID50 ml−1 ISKNV per fish. Our detailed investigation provided definitive diagnosis of ISKNV in the severe mass mortality event in wild E. suratensis in Peechi Dam, India, adding one more species to expanding host range of ISKNV infection. The high mortality rate of ISKNV infection in pearlspot suggests the perilous nature of this disease, particularly among the wild fish population

    Co-infection of Lactococcus garvieae and Tilapia lake virus (TiLV) in Nile tilapia O. niloticus cultured in India

    No full text
    Tilapia lake virus (TiLV) and Lactococcus garvieae are 2 major pathogens of cultured Nile tilapia Oreochromis niloticus. In June-July 2018, a disease outbreak was reported in Nile tilapia cultured in brackish water floating cages in Kerala, India. Affected fish died gradually, and cumulative mortality reached ~75% within 1 mo. In the present study, TiLV and L. garvieae were isolated from the infected fish and confirmed. Nucleotide analysis of the partial sequence of segment 3 revealed that the present TiLV isolate showed 100% similarity with TiLV MF574205 and 97.65% similarity with TiLV KU552135 isolated in Israel. The partial 16S rDNA nucleotide sequence of L. garvieae shared 99% similarity with the 16S rDNA nucleotide sequence of L. garvieae isolated from Nile tilapia in Brazil. Eight virulence genes (hly1, hly2, hly3, NADH oxidase, adhPav, LPxTG-1, LPxTG-4, adhC1) were amplified in the present isolate. In the experimental challenge study, the onset of mortality started earlier in fish co-infected with TiLV and L. garvieae (3 d post-infection [dpi]) compared to other groups. Cumulative mortality (90% at 12 dpi) was significantly higher in the co-infected group than in fish infected with TiLV (60% at 12 dpi) and L. garvieae (40% at 12 dpi) alone. This study reveals that synergistic co-infection with TiLV and other bacteria may increase mortality in disease outbreaks. To the best of our knowledge, this is the first reported co-infection of L. garvieae with TiLV associated with mass mortality in Nile tilapia in India

    Journal of Fish Diseases

    No full text
    Not AvailableMegalocytivirus cause diseases that have serious economic impacts on aquaculture, mainly in East and South-East Asia. Five primary genotypes are known: infectious spleen and kidney necrosis virus (ISKNV), red sea bream iridovirus (RSIV), turbot reddish body iridovirus (TRBIV), threespine stickleback iridovirus (TSIV) and scale drop disease virus (SDDV). ISKNV-mediated infectious spleen and kidney necrosis disease (ISKND) is a major viral disease in both freshwater and marine fish species. In this study, we report the isolation of ISKNV from diseased giant gourami, Osphronemus goramy, in India. Transmission electron microscopy of ultrathin sections of kidney and spleen revealed the presence of numerous polygonal naked viral particles having an outer nucleocapsid layer within the cytoplasm of enlarged cells (115-125 nm). Molecular and phylogenetic analyses confirmed the presence of ISKNV and the major capsid protein (MCP) (1,362 bp) gene in the infected fish had a high similarity to the other ISKNV-I isolates. Moreover, ISKNV was propagated in the Astronotus ocellatus fin (AOF) cell line and further confirmed genotypically. A high mortality rate (60%) was observed in gourami fish injected with ISKNV-positive tissue homogenate through challenge studies. Considering the lethal nature of ISKNV, the present study spotlights the implementation of stringent biosecurity practices for the proper control of the disease in the country

    FAD-I, a Fusobacterium nucleatum Cell Wall-Associated Diacylated Lipoprotein That Mediates Human Beta Defensin 2 Induction through Toll-Like Receptor-1/2 (TLR-1/2) and TLR-2/6

    No full text
    We previously identified a cell wall-associated protein from Fusobacterium nucleatum, a Gram-negative bacterium of the oral cavity, that induces human beta defensin 2 (hBD-2) in primary human oral epithelial cells (HOECs) and designated it FAD-I (Fusobacterium-associated defensin inducer). Here, we report differential induction of hBD-2 by different strains of F. nucleatum; ATCC 25586 and ATCC 23726 induce significantly more hBD-2 mRNA than ATCC 10953. Heterologous expression of plasmid-borne fadI from the highly hBD-2-inducing strains in a ΔfadI mutant of ATCC 10953 resulted in hBD-2 induction to levels comparable to those of the highly inducing strains, indicating that FAD-I is the principal F. nucleatum agent for hBD-2 induction in HOECs. Moreover, anti-FAD-I antibodies blocked F. nucleatum induction of hBD-2 by more than 80%. Recombinant FAD-I (rFAD-I) expressed in Escherichia coli triggered levels of hBD-2 transcription and peptide release in HOECs similar to those of native FAD-I (nFAD-I) isolated from F. nucleatum ATCC 25586. Tandem mass spectrometry revealed a diacylglycerol modification at the cysteine residue in position 16 for both nFAD-I and rFAD-I. Cysteine-to-alanine substitution abrogated FAD-I's ability to induce hBD-2. Finally, FAD-I activation of hBD-2 expression was mediated via both Toll-like receptor-1/2 (TLR-1/2) and TLR-2/6 heterodimerization. Microbial molecules like FAD-I may be utilized in novel therapeutic ways to bolster the host innate immune response at mucosal surfaces
    corecore