943 research outputs found

    The habitability of a stagnant-lid Earth

    Full text link
    Plate tectonics is a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2_2O and CO2_2, and resulting climate of an Earth-like planet lacking plate tectonics. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2_2O and CO2_2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2_2O and CO2_2. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2_2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2_2, can vary in a non-monotonic way depending on the extent of the outgassed H2_2O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability

    A model of chlorophyll fluorescence in microalgae integrating photoproduction, photoinhibition and photoregulation

    Get PDF
    This paper presents a mathematical model capable of quantitative prediction of the state of the photosynthetic apparatus of microalgae in terms of their open, closed and damaged reaction centers under variable light conditions. This model combines the processes of photoproduction and photoinhibition in the Han model with a novel mathematical representation of photoprotective mechanisms, including qE-quenching and qI-quenching. For calibration and validation purposes, the model can be used to simulate fluorescence fluxes, such as those measured in PAM fluorometry, as well as classical fluorescence indexes. A calibration is carried out for the microalga Nannochloropsis gaditana, whereby 9 out of the 13 model parameters are estimated with good statistical significance using the realized, minimal and maximal fluorescence fluxes measured from a typical PAM protocol. The model is further validated by considering a more challenging PAM protocol alternating periods of intense light and dark, showing a good ability to provide quantitative predictions of the fluorescence fluxes even though it was calibrated for a different and somewhat simpler PAM protocol. A promising application of the model is for the prediction of PI-response curves based on PAM fluorometry, together with the long-term prospect of combining it with hydrodynamic and light attenuation models for high-fidelity simulation and optimization of full-scale microalgae production systems

    Diagnostic accuracy of single baseline measurement of Elecsys Troponin T high-sensitive assay for diagnosis of acute myocardial infarction in emergency department: systematic review and meta-analysis

    Get PDF
    Published onlineJournal ArticleMeta-AnalysisResearch Support, Non-U.S. Gov'tReviewOBJECTIVE: To obtain summary estimates of the accuracy of a single baseline measurement of the Elecsys Troponin T high-sensitive assay (Roche Diagnostics) for the diagnosis of acute myocardial infarction in patients presenting to the emergency department. DESIGN: Systematic review and meta-analysis of diagnostic test accuracy studies. DATA SOURCES: Medline, Embase, and other relevant electronic databases were searched for papers published between January 2006 and December 2013. STUDY SELECTION: Studies were included if they evaluated the diagnostic accuracy of a single baseline measurement of Elecsys Troponin T high-sensitive assay for the diagnosis of acute myocardial infarction in patients presenting to the emergency department with suspected acute coronary syndrome. STUDY APPRAISAL AND DATA SYNTHESIS: The first author screened all titles and abstracts identified through the searches and selected all potentially relevant papers. The screening of the full texts, the data extraction, and the methodological quality assessment, using the adapted QUADAS-2 tool, were conducted independently by two reviewers with disagreements being resolved through discussion or arbitration. If appropriate, meta-analysis was conducted using the hierarchical bivariate model. RESULTS: Twenty three studies reported the performance of the evaluated assay at presentation. The results for 14 ng/L and 3-5 ng/L cut-off values were pooled separately. At 14 ng/L (20 papers), the summary sensitivity was 89.5% (95% confidence interval 86.3% to 92.1%) and the summary specificity was 77.1% (68.7% to 83.7%). At 3-5 ng/L (six papers), the summary sensitivity was 97.4% (94.9% to 98.7%) and the summary specificity was 42.4% (31.2% to 54.5%). This means that if 21 of 100 consecutive patients have the target condition (21%, the median prevalence across the studies), 2 (95% confidence interval 2 to 3) of 21 patients with acute myocardial infarction will be missed (false negatives) if 14 ng/L is used as a cut-off value and 18 (13 to 25) of 79 patients without acute myocardial infarction will test positive (false positives). If the 3-5 ng/L cut-off value is used, <1 (0 to 1) patient with acute myocardial infarction will be missed and 46 (36 to 54) patients without acute myocardial infarction will test positive. CONCLUSIONS: The results indicate that a single baseline measurement of the Elecsys Troponin T high-sensitive assay could be used to rule out acute myocardial infarction if lower cut-off values such as 3 ng/L or 5 ng/L are used. However, this method should be part of a comprehensive triage strategy and may not be appropriate for patients who present less than three hours after symptom onset. Care must also be exercised because of the higher imprecision of the evaluated assay and the greater effect of lot-to-lot reagent variation at low troponin concentrations. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration number CRD42013003926.This research was funded by the South West Academic Health Science Network (AHSN) and the National Institute for Health Research (NIHR) Collaboration for Leadership for Applied Health Research and Care for the South West Peninsula

    Use of 137 Cs isotopic technique in soil erosion studies in Central Greece

    Get PDF
    The 137Cs technique was used to study soil erosion and deposition rates in soils in the Viotia prefecture, central Greece. Three sites with different soil types were selected and studied. Soils were sampled along transects and analyzed for 137Cs. The main goal of this field investigation was to study the 137Cs 3-D distribution pattern within key sites and to apply this information for the assessment of soil redistribution. The erosion and deposition rates were estimated using the proportional and the simplified mass balance models (Walling and He, 1997). Erosion and deposition rates predicted through the spatial distribution of 137Cs depended on the location of the profile studied in the landscape and were determined by the soil plough depth, the soil structure (bulk density), and the calibration model used to conve rt soil 137Cs measurements to estimates of soil redistribution rates. Estimated erosion rates for the Mouriki area site, varied from 16.62 to 102.56 t ha-1 y-1 for the top of the slope soil profile and from 5.37 to 25.68 t ha-1 y-1 for the middle of the slope soil profile. The deposition rates varied from 7.26 to 42.95 t ha-1 y-1 for the bottom of the slope soil profile

    Use of 137 Cs isotopic technique in soil erosion studies in Central Greece

    Get PDF
    The 137Cs technique was used to study soil erosion and deposition rates in soils in the Viotia prefecture, central Greece. Three sites with different soil types were selected and studied. Soils were sampled along transects and analyzed for 137Cs. The main goal of this field investigation was to study the 137Cs 3-D distribution pattern within key sites and to apply this information for the assessment of soil redistribution. The erosion and deposition rates were estimated using the proportional and the simplified mass balance models (Walling and He, 1997). Erosion and deposition rates predicted through the spatial distribution of 137Cs depended on the location of the profile studied in the landscape and were determined by the soil plough depth, the soil structure (bulk density), and the calibration model used to conve rt soil 137Cs measurements to estimates of soil redistribution rates. Estimated erosion rates for the Mouriki area site, varied from 16.62 to 102.56 t ha-1 y-1 for the top of the slope soil profile and from 5.37 to 25.68 t ha-1 y-1 for the middle of the slope soil profile. The deposition rates varied from 7.26 to 42.95 t ha-1 y-1 for the bottom of the slope soil profile

    Temperature-ramped 129Xe spin-exchange optical pumping

    Get PDF
    We describe temperature-ramped spin-exchange optical pumping (TR-SEOP) in an automated high-throughput batch-mode 129Xe hyperpolarizer utilizing three key temperature regimes: (i) “hot”where the 129Xe hyperpolarization rate is maximal, (ii) “warm”-where the 129Xe hyperpolarization approaches unity, and (iii) “cool” where hyperpolarized 129Xe gas is transferred into a Tedlar bag with low Rb content (<5 ng per ∼1 L dose) suitable for human imaging applications. Unlike with the conventional approach of batch-mode SEOP, here all three temperature regimes may be operated under continuous high-power (170 W) laser irradiation, and hyperpolarized 129Xe gas is delivered without the need for a cryocollection step. The variable-temperature approach increased the SEOP rate by more than 2-fold compared to the constant-temperature polarization rate (e.g., giving effective values for the exponential buildup constant γSEOP of 62.5 ± 3.7 × 10−3 min−1 vs 29.9 ± 1.2 × 10−3 min−1) while achieving nearly the same maximum %PXe value (88.0 ± 0.8% vs 90.1% ± 0.8%, for a 500 Torr (67 kPa) Xe cell loadingcorresponding to nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) enhancements of ∼3.1 × 105 and ∼2.32 × 108 at the relevant fields for clinical imaging and HP 129Xe production of 3 T and 4 mT, respectively); moreover, the intercycle “dead” time was also significantly decreased. The higher-throughput TR-SEOP approach can be implemented without sacrificing the level of 129Xe hyperpolarization or the experimental stability for automation-making this approach beneficial for improving the overall 129Xe production rate in clinical settings

    Zero Temperature Glass Transition in the Two-Dimensional Gauge Glass Model

    Full text link
    We investigate dynamic scaling properties of the two-dimensional gauge glass model for the vortex glass phase in superconductors with quenched disorder. From extensive Monte Carlo simulations we obtain static and dynamic finite size scaling behavior, where the static simulations use a temperature exchange method to ensure convergence at low temperatures. Both static and dynamic scaling of Monte Carlo data is consistent with a glass transition at zero temperature. We study a dynamic correlation function for the superconducting order parameter, as well as the phase slip resistance. From the scaling of these two functions, we find evidence for two distinct diverging correlation times at the zero temperature glass transition. The longer of these time scales is associated with phase slip fluctuations across the system that lead to finite resistance at any finite temperature, while the shorter time scale is associated with local phase fluctuations.Comment: 8 pages, 10 figures; v2: some minor correction

    Home Manufacture of Drugs: An Online Investigation and a Toxicological Reality Check of Online Discussions on Drug Chemistry

    Get PDF
    Emerging trends in market dynamics and the use of new psychoactive substances are both a public health concern and a complex regulatory issue. One novel area of investigation is the availability of homemade opioids, amphetamines and dissociatives, and the potential fueling of interest in clandestine home manufacture of drugs via the Internet. We illustrate here how online communal folk pharmacology of homemade drugs on drug website forums may actually inform home manufacture practices or contribute to the reduction of harms associated with this practice. Discrepancies between online information around purification and making homemade drugs safer, and the synthesis of the same substances in a proper laboratory environment, exist. Moderation and shutdown of synthesis queries and discussions online are grounded in drug websites adhering to harm-reduction principles by facilitating discussions around purification of homemade drugs only. Drug discussion forums should consider reevaluating their policies on chemistry discussions in aiming to reach people who cannot or will not refrain from cooking their own drugs with credible information that may contribute to reductions in the harms associated with this practice. © 2017 Taylor & Francis Group, LL
    corecore