15 research outputs found

    Elective surgery system strengthening: development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries.

    Get PDF
    BACKGROUND The 2015 Lancet Commission on global surgery identified surgery and anaesthesia as indispensable parts of holistic health-care systems. However, COVID-19 exposed the fragility of planned surgical services around the world, which have also been neglected in pandemic recovery planning. This study aimed to develop and validate a novel index to support local elective surgical system strengthening and address growing backlogs. METHODS First, we performed an international consultation through a four-stage consensus process to develop a multidomain index for hospital-level assessment (surgical preparedness index; SPI). Second, we measured surgical preparedness across a global network of hospitals in high-income countries (HICs), middle-income countries (MICs), and low-income countries (LICs) to explore the distribution of the SPI at national, subnational, and hospital levels. Finally, using COVID-19 as an example of an external system shock, we compared hospitals' SPI to their planned surgical volume ratio (SVR; ie, operations for which the decision for surgery was made before hospital admission), calculated as the ratio of the observed surgical volume over a 1-month assessment period between June 6 and Aug 5, 2021, against the expected surgical volume based on hospital administrative data from the same period in 2019 (ie, a pre-pandemic baseline). A linear mixed-effects regression model was used to determine the effect of increasing SPI score. FINDINGS In the first phase, from a longlist of 103 candidate indicators, 23 were prioritised as core indicators of elective surgical system preparedness by 69 clinicians (23 [33%] women; 46 [67%] men; 41 from HICs, 22 from MICs, and six from LICs) from 32 countries. The multidomain SPI included 11 indicators on facilities and consumables, two on staffing, two on prioritisation, and eight on systems. Hospitals were scored from 23 (least prepared) to 115 points (most prepared). In the second phase, surgical preparedness was measured in 1632 hospitals by 4714 clinicians from 119 countries. 745 (45·6%) of 1632 hospitals were in MICs or LICs. The mean SPI score was 84·5 (95% CI 84·1-84·9), which varied between HIC (88·5 [89·0-88·0]), MIC (81·8 [82·5-81·1]), and LIC (66·8 [64·9-68·7]) settings. In the third phase, 1217 (74·6%) hospitals did not maintain their expected SVR during the COVID-19 pandemic, of which 625 (51·4%) were from HIC, 538 (44·2%) from MIC, and 54 (4·4%) from LIC settings. In the mixed-effects model, a 10-point increase in SPI corresponded to a 3·6% (95% CI 3·0-4·1; p<0·0001) increase in SVR. This was consistent in HIC (4·8% [4·1-5·5]; p<0·0001), MIC (2·8 [2·0-3·7]; p<0·0001), and LIC (3·8 [1·3-6·7%]; p<0·0001) settings. INTERPRETATION The SPI contains 23 indicators that are globally applicable, relevant across different system stressors, vary at a subnational level, and are collectable by front-line teams. In the case study of COVID-19, a higher SPI was associated with an increased planned surgical volume ratio independent of country income status, COVID-19 burden, and hospital type. Hospitals should perform annual self-assessment of their surgical preparedness to identify areas that can be improved, create resilience in local surgical systems, and upscale capacity to address elective surgery backlogs. FUNDING National Institute for Health Research (NIHR) Global Health Research Unit on Global Surgery, NIHR Academy, Association of Coloproctology of Great Britain and Ireland, Bowel Research UK, British Association of Surgical Oncology, British Gynaecological Cancer Society, and Medtronic

    Elective surgery system strengthening: development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries

    Get PDF
    Background The 2015 Lancet Commission on global surgery identified surgery and anaesthesia as indispensable parts of holistic health-care systems. However, COVID-19 exposed the fragility of planned surgical services around the world, which have also been neglected in pandemic recovery planning. This study aimed to develop and validate a novel index to support local elective surgical system strengthening and address growing backlogs. Methods First, we performed an international consultation through a four-stage consensus process to develop a multidomain index for hospital-level assessment (surgical preparedness index; SPI). Second, we measured surgical preparedness across a global network of hospitals in high-income countries (HICs), middle-income countries (MICs), and low-income countries (LICs) to explore the distribution of the SPI at national, subnational, and hospital levels. Finally, using COVID-19 as an example of an external system shock, we compared hospitals' SPI to their planned surgical volume ratio (SVR; ie, operations for which the decision for surgery was made before hospital admission), calculated as the ratio of the observed surgical volume over a 1-month assessment period between June 6 and Aug 5, 2021, against the expected surgical volume based on hospital administrative data from the same period in 2019 (ie, a pre-pandemic baseline). A linear mixed-effects regression model was used to determine the effect of increasing SPI score. Findings In the first phase, from a longlist of 103 candidate indicators, 23 were prioritised as core indicators of elective surgical system preparedness by 69 clinicians (23 [33%] women; 46 [67%] men; 41 from HICs, 22 from MICs, and six from LICs) from 32 countries. The multidomain SPI included 11 indicators on facilities and consumables, two on staffing, two on prioritisation, and eight on systems. Hospitals were scored from 23 (least prepared) to 115 points (most prepared). In the second phase, surgical preparedness was measured in 1632 hospitals by 4714 clinicians from 119 countries. 745 (45·6%) of 1632 hospitals were in MICs or LICs. The mean SPI score was 84·5 (95% CI 84·1–84·9), which varied between HIC (88·5 [89·0–88·0]), MIC (81·8 [82·5–81·1]), and LIC (66·8 [64·9–68·7]) settings. In the third phase, 1217 (74·6%) hospitals did not maintain their expected SVR during the COVID-19 pandemic, of which 625 (51·4%) were from HIC, 538 (44·2%) from MIC, and 54 (4·4%) from LIC settings. In the mixed-effects model, a 10-point increase in SPI corresponded to a 3·6% (95% CI 3·0–4·1; p<0·0001) increase in SVR. This was consistent in HIC (4·8% [4·1–5·5]; p<0·0001), MIC (2·8 [2·0–3·7]; p<0·0001), and LIC (3·8 [1·3–6·7%]; p<0·0001) settings. Interpretation The SPI contains 23 indicators that are globally applicable, relevant across different system stressors, vary at a subnational level, and are collectable by front-line teams. In the case study of COVID-19, a higher SPI was associated with an increased planned surgical volume ratio independent of country income status, COVID-19 burden, and hospital type. Hospitals should perform annual self-assessment of their surgical preparedness to identify areas that can be improved, create resilience in local surgical systems, and upscale capacity to address elective surgery backlogs. Funding National Institute for Health Research (NIHR) Global Health Research Unit on Global Surgery, NIHR Academy, Association of Coloproctology of Great Britain and Ireland, Bowel Research UK, British Association of Surgical Oncology, British Gynaecological Cancer Society, and Medtronic

    Elective surgery system strengthening: development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries

    Get PDF
    Background The 2015 Lancet Commission on global surgery identified surgery and anaesthesia as indispensable parts of holistic health-care systems. However, COVID-19 exposed the fragility of planned surgical services around the world, which have also been neglected in pandemic recovery planning. This study aimed to develop and validate a novel index to support local elective surgical system strengthening and address growing backlogs. Methods First, we performed an international consultation through a four-stage consensus process to develop a multidomain index for hospital-level assessment (surgical preparedness index; SPI). Second, we measured surgical preparedness across a global network of hospitals in high-income countries (HICs), middle-income countries (MICs), and low-income countries (LICs) to explore the distribution of the SPI at national, subnational, and hospital levels. Finally, using COVID-19 as an example of an external system shock, we compared hospitals' SPI to their planned surgical volume ratio (SVR; ie, operations for which the decision for surgery was made before hospital admission), calculated as the ratio of the observed surgical volume over a 1-month assessment period between June 6 and Aug 5, 2021, against the expected surgical volume based on hospital administrative data from the same period in 2019 (ie, a pre-pandemic baseline). A linear mixed-effects regression model was used to determine the effect of increasing SPI score. Findings In the first phase, from a longlist of 103 candidate indicators, 23 were prioritised as core indicators of elective surgical system preparedness by 69 clinicians (23 [33%] women; 46 [67%] men; 41 from HICs, 22 from MICs, and six from LICs) from 32 countries. The multidomain SPI included 11 indicators on facilities and consumables, two on staffing, two on prioritisation, and eight on systems. Hospitals were scored from 23 (least prepared) to 115 points (most prepared). In the second phase, surgical preparedness was measured in 1632 hospitals by 4714 clinicians from 119 countries. 745 (45·6%) of 1632 hospitals were in MICs or LICs. The mean SPI score was 84·5 (95% CI 84·1–84·9), which varied between HIC (88·5 [89·0–88·0]), MIC (81·8 [82·5–81·1]), and LIC (66·8 [64·9–68·7]) settings. In the third phase, 1217 (74·6%) hospitals did not maintain their expected SVR during the COVID-19 pandemic, of which 625 (51·4%) were from HIC, 538 (44·2%) from MIC, and 54 (4·4%) from LIC settings. In the mixed-effects model, a 10-point increase in SPI corresponded to a 3·6% (95% CI 3·0–4·1; p<0·0001) increase in SVR. This was consistent in HIC (4·8% [4·1–5·5]; p<0·0001), MIC (2·8 [2·0–3·7]; p<0·0001), and LIC (3·8 [1·3–6·7%]; p<0·0001) settings. Interpretation The SPI contains 23 indicators that are globally applicable, relevant across different system stressors, vary at a subnational level, and are collectable by front-line teams. In the case study of COVID-19, a higher SPI was associated with an increased planned surgical volume ratio independent of country income status, COVID-19 burden, and hospital type. Hospitals should perform annual self-assessment of their surgical preparedness to identify areas that can be improved, create resilience in local surgical systems, and upscale capacity to address elective surgery backlogs

    Reducing surgical site infections in low-income and middle-income countries (FALCON): a pragmatic, multicentre, stratified, randomised controlled trial.

    No full text
    BackgroundSurgical site infection (SSI) is the most common postoperative complication worldwide. WHO guidelines to prevent SSI recommend alcoholic chlorhexidine skin preparation and fascial closure using triclosan-coated sutures, but called for assessment of both interventions in low-resource settings. This study aimed to test both interventions in low-income and middle-income countries.MethodsFALCON was a 2 × 2 factorial, randomised controlled trial stratified by whether surgery was clean-contaminated, or contaminated or dirty, including patients undergoing abdominal surgery with a skin incision of 5 cm or greater. This trial was undertaken in 54 hospitals in seven countries (Benin, Ghana, India, Mexico, Nigeria, Rwanda, and South Africa). Patients were computer randomised 1:1:1:1 to: (1) 2% alcoholic chlorhexidine and non-coated suture, (2) 2% alcoholic chlorhexidine and triclosan-coated suture, (3) 10% aqueous povidone-iodine and non-coated suture, or (4) 10% aqueous povidone-iodine and triclosan-coated suture. Patients and outcome assessors were masked to intervention allocation. The primary outcome was SSI, reported by trained outcome assessors, and presented using adjusted relative risks and 95% CIs. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, NCT03700749.FindingsBetween Dec 10, 2018, and Sept 7, 2020, 5788 patients (3091 in clean-contaminated stratum, 2697 in contaminated or dirty stratum) were randomised (1446 to alcoholic chlorhexidine and non-coated suture, 1446 to alcoholic chlorhexidine and triclosan-coated suture, 1447 to aqueous povidone-iodine and non-coated suture, and 1449 to aqueous povidone-iodine and triclosan-coated suture). 14·0% (810/5788) of patients were children and 66·9% (3873/5788) had emergency surgery. The overall SSI rate was 22·0% (1163/5284; clean-contaminated stratum 15·5% [454/2923], contaminated or dirty stratum 30·0% [709/2361]). For both strata, there was no evidence of a difference in the risk of SSI with alcoholic chlorhexidine versus povidone-iodine (clean-contaminated stratum 15·3% [223/1455] vs 15·7% [231/1468], relative risk 0·97 [95% CI 0·82-1·14]; contaminated or dirty stratum 28·3% [338/1194] vs 31·8% [371/1167], relative risk 0·91 [95% CI 0·81-1·02]), or with triclosan-coated sutures versus non-coated sutures (clean-contaminated stratum 14·7% [215/1459] vs 16·3% [239/1464], relative risk 0·90 [95% CI 0·77-1·06]; contaminated or dirty stratum 29·4% [347/1181] vs 30·7% [362/1180], relative risk 0·98 [95% CI 0·87-1·10]). With both strata combined, there were no differences using alcoholic chlorhexidine or triclosan-coated sutures.InterpretationThis trial did not show benefit from 2% alcoholic chlorhexidine skin preparation compared with povidone-iodine, or with triclosan-coated sutures compared with non-coated sutures, in preventing SSI in clean-contaminated or contaminated or dirty surgical wounds. Both interventions are more expensive than alternatives, and these findings do not support recommendations for routine use.FundingNational Institute for Health Research (NIHR) Global Health Research Unit Grant, BD

    Use of Telemedicine for Postdischarge Assessment of the Surgical Wound: International Cohort Study, and Systematic Review With Meta-analysis.

    No full text
    ObjectiveThis study aimed to determine whether remote wound reviews using telemedicine can be safely upscaled, and if standardized assessment tools are needed.BackgroundSurgical site infection (SSI) is the most common complication of surgery worldwide, and frequently occurs after hospital discharge. Evidence to support implementation of telemedicine during postoperative recovery will be an essential component of pandemic recovery.MethodsThe primary outcome of this study was SSI reported up to 30 days after surgery (SSI), comparing rates reported using telemedicine (telephone and/or video assessment) to those with in-person review. The first part of this study analyzed primary data from an international cohort study of adult patients undergoing abdominal surgery who were discharged from hospital before 30 days after surgery. The second part combined this data with the results of a systematic review to perform a meta-analysis of all available data conducted in accordance with PRIMSA guidelines (PROSPERO:192596).ResultsThe cohort study included 15,358 patients from 66 countries (8069 high, 4448 middle, 1744 low income). Of these, 6907 (45.0%) were followed up using telemedicine. The SSI rate reported using telemedicine was slightly lower than with in-person follow-up (13.4% vs 11.1%, P ConclusionsUse of telemedicine to assess the surgical wound postdischarge is feasible, but risks underreporting of SSI. Standardized tools for remote assessment of SSI must be evaluated and adopted as telemedicine is upscaled globally

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    Background: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58-5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23-0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research

    Strategies to minimise and monitor biases and imbalances by arm in surgical cluster randomised trials: evidence from ChEETAh, a trial in seven low- and middle-income countries

    No full text
    Abstract Background Cluster randomised controlled trials (cRCT) present challenges regarding risks of bias and chance imbalances by arm. This paper reports strategies to minimise and monitor biases and imbalances in the ChEETAh cRCT. Methods ChEETAh was an international cRCT (hospitals as clusters) evaluating whether changing sterile gloves and instruments prior to abdominal wound closure reduces surgical site infection at 30 days postoperative. ChEETAh planned to recruit 12,800 consecutive patients from 64 hospitals in seven low-middle income countries. Eight strategies to minimise and monitor bias were pre-specified: (1) minimum of 4 hospitals per country; (2) pre-randomisation identification of units of exposure (operating theatres, lists, teams or sessions) within clusters; (3) minimisation of randomisation by country and hospital type; (4) site training delivered after randomisation; (5) dedicated ‘warm-up week’ to train teams; (6) trial specific sticker and patient register to monitor consecutive patient identification; (7) monitoring characteristics of patients and units of exposure; and (8) low-burden outcome-assessment. Results This analysis includes 10,686 patients from 70 clusters. The results aligned to the eight strategies were (1) 6 out of 7 countries included ≥ 4 hospitals; (2) 87.1% (61/70) of hospitals maintained their planned operating theatres (82% [27/33] and 92% [34/37] in the intervention and control arms); (3) minimisation maintained balance of key factors in both arms; (4) post-randomisation training was conducted for all hospitals; (5) the ‘warm-up week’ was conducted at all sites, and feedback used to refine processes; (6) the sticker and trial register were maintained, with an overall inclusion of 98.1% (10,686/10,894) of eligible patients; (7) monitoring allowed swift identification of problems in patient inclusion and key patient characteristics were reported: malignancy (20.3% intervention vs 12.6% control), midline incisions (68.4% vs 58.9%) and elective surgery (52.4% vs 42.6%); and (8) 0.4% (41/9187) of patients refused consent for outcome assessment. Conclusion cRCTs in surgery have several potential sources of bias that include varying units of exposure and the need for consecutive inclusion of all eligible patients across complex settings. We report a system that monitored and minimised the risks of bias and imbalances by arm, with important lessons for future cRCTs within hospitals

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    8 páginasBackground: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18–49, 50–69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore