1,502 research outputs found

    Implementing and characterizing precise multi-qubit measurements

    Full text link
    There are two general requirements to harness the computational power of quantum mechanics: the ability to manipulate the evolution of an isolated system and the ability to faithfully extract information from it. Quantum error correction and simulation often make a more exacting demand: the ability to perform non-destructive measurements of specific correlations within that system. We realize such measurements by employing a protocol adapted from [S. Nigg and S. M. Girvin, Phys. Rev. Lett. 110, 243604 (2013)], enabling real-time selection of arbitrary register-wide Pauli operators. Our implementation consists of a simple circuit quantum electrodynamics (cQED) module of four highly-coherent 3D transmon qubits, collectively coupled to a high-Q superconducting microwave cavity. As a demonstration, we enact all seven nontrivial subset-parity measurements on our three-qubit register. For each we fully characterize the realized measurement by analyzing the detector (observable operators) via quantum detector tomography and by analyzing the quantum back-action via conditioned process tomography. No single quantity completely encapsulates the performance of a measurement, and standard figures of merit have not yet emerged. Accordingly, we consider several new fidelity measures for both the detector and the complete measurement process. We measure all of these quantities and report high fidelities, indicating that we are measuring the desired quantities precisely and that the measurements are highly non-demolition. We further show that both results are improved significantly by an additional error-heralding measurement. The analyses presented here form a useful basis for the future characterization and validation of quantum measurements, anticipating the demands of emerging quantum technologies.Comment: 10 pages, 5 figures, plus supplemen

    Universal detector efficiency of a mesoscopic capacitor

    Full text link
    We investigate theoretically a novel type of high frequency quantum detector based on the mesoscopic capacitor recently realized by Gabelli et al., [Science {\bf 313}, 499 (2006)], which consists of a quantum dot connected via a single channel quantum point contact to a single lead. We show that the state of a double quantum dot charge qubit capacitively coupled to this detector can be read out in the GHz frequency regime with near quantum limited efficiency. To leading order, the quantum efficiency is found to be universal owing to the universality of the charge relaxation resistance of the mesoscopic capacitor.Comment: 4 pages, 2 figures, submitted to PR

    PLoS. Biol.

    No full text

    The Influence of Foot Positioning on Ankle Sprains

    Get PDF
    The goal of this study was to examine the influence of changes in foot positioning at touch-down on ankle sprain occurrence. Muscle model driven computer simulations of 10 subjects performing the landing phase of a side-shuffle movement were performed. The relative subtalar joint and talocural joint angles at touchdown were varied, and each subject-specific simulation was exposed to a set of perturbed floor conditions. The touchdown subtalar joint angle was not found to have a considerable influence on sprain occurrence, while increased touchdown plantar flexion caused increased ankle sprain occurrences. Increased touchdown plantar flexion may be the mechanism which causes ankles with a history of ankle sprains to have an increased susceptibility to subsequent sprains. This finding may also reveal a mechanism by which taping of a sprained ankle or the application of an ankle brace leads to decreased ankle sprain susceptibility

    Effects of Foot Orthoses on Skeletal Motion During Running

    Get PDF
    Objective. To quantify the effects of medial foot orthoses on skeletal movements of the calcaneus and tibia during the stance phase in running. Design. Kinematic effects of medial foot orthoses (anterior, posterior, no support) were tested using skeletal (and shoe) markers at the calcaneus and tibia. Background. Previous studies using shoe and skin markers concluded that medially placed orthoses control/reduce foot eversion and tibial rotation. However, it is currently unknown if such orthoses also affect skeletal motion at the lower extremities. Methods. Intracortical Hofman pins with reflective marker triads were inserted under standard local anesthetic into the calcaneus and tibia of five healthy male subjects. The three-dimensional tibiocalcaneal rotations were determined using a joint coordinate system approach. Eversion (skeletal and shoe) and tibial rotation were calculated to study the foot orthoses effects. Results. Orthotic effects on eversion and tibial rotations were found to be small and unsystematic over all subjects. Differences between the subjects were significantly larger (pp\u3c0.05). Conclusions. This in vivo study showed that medially placed foot orthoses did not change tibiocalcaneal movement patterns substantially during the stance phase of running. Relevance Orthoses may have only small kinematic effects on the calcaneus and tibia (measured with bone pins) as well as on the shoes (measured with shoe markers) during running of normal subjects. Present results showed that orthotic effects were subject specific and unsystematic across conditions. It is speculated that orthotic effects during the stance phase of running may be mechanical as well as proprioceptive

    Which executive functioning deficits are associated with AD/HD, ODD/CD and comorbid AD/HD+ODD/CD?

    Get PDF
    Item does not contain fulltextThis study investigated (1) whether attention deficit/hyperactivity disorder (AD/HD) is associated with executive functioning (EF) deficits while controlling for oppositional defiant disorder/conduct disorder (ODD/CD), (2) whether ODD/CD is associated with EF deficits while controlling for AD/HD, and (3)~whether a combination of AD/HD and ODD/CD is associated with EF deficits (and the possibility that there is no association between EF deficits and AD/HD or ODD/CD in isolation). Subjects were 99~children ages 6–12 years. Three putative domains of EF were investigated using well-validated tests: verbal fluency, working memory, and planning. Independent of ODD/CD, AD/HD was associated with deficits in planning and working memory, but not in verbal fluency. Only teacher rated AD/HD, but not parent rated AD/HD, significantly contributed to the prediction of EF task performance. No EF deficits were associated with ODD/CD. The presence of comorbid AD/HD accounts for the EF deficits in children with comorbid AD/HD+ODD/CD. These results suggest that EF deficits are unique to AD/HD and support the model proposed by R. A. Barkley (1997).17 p

    Trends in alcohol use among Hawai‘i adolescents

    Get PDF
    It is important to review trends in youth alcohol use over time in order to effectively tailor prevention programs to address those trends. This article reviews data on alcohol use behaviors from the Centers for Disease Control and Prevention\u27s Youth Risk Behavior Survey in Hawai‘i from 1993 to 2007. Five alcohol use indicators were examined and stratified by grade level, from 9th grade through 12th grade. Significant drops in nearly all indicators are seen among 9th through 11th graders, but not among 12th graders. This suggests that Hawai‘i youth are responding well to anti-alcohol messaging as young teens, but a different approach may be needed to target older teens

    Comparison of ankle and subtalar joint complex range of motion during barefoot walking and walking in Masai Barefoot Technology sandals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Masai Barefoot Technology (MBT, Switzerland) produce footwear which they claim simulate walking barefoot on soft undulating ground. This paper reports an investigation into the effect of MBT sandals on the motion of the ankle and subtalar joint complex during walking.</p> <p>Methods</p> <p>Range of motion data was collected in the sagittal, frontal and transverse plane from the ankle and subtalar joint complex from 32 asymptomatic subjects using the CODA MPX30 motion analysis system during both barefoot walking and walking in the MBT sandal. Shod and un-shod data were compared using the Wilcoxon signed ranks test.</p> <p>Results</p> <p>A significantly greater range of motion in the frontal and sagittal planes was recorded when walking in the MBT sandal (p = 0.031, and p = 0.015 respectively). In the transverse plane, no significant difference was found (p = 0.470).</p> <p>Conclusions</p> <p>MBT sandals increase the range of motion of the ankle and subtalar joint complex in the frontal and sagittal planes. MBT footwear could therefore have a role to play in the management of musculoskeletal disorders where an increase in frontal and sagittal plane range of motion is desirable.</p
    corecore