30 research outputs found

    Composite symmetry protected topological order and effective models

    Get PDF
    Strongly correlated quantum many-body systems at low dimension exhibit a wealth of phenomena, ranging from features of geometric frustration to signatures of symmetry-protected topological order. In suitable descriptions of such systems, it can be helpful to resort to effective models which focus on the essential degrees of freedom of the given model. In this work, we analyze how to determine the validity of an effective model by demanding it to be in the same phase as the original model. We focus our study on one-dimensional spin-1/2 systems and explain how non-trivial symmetry protected topologically ordered (SPT) phases of an effective spin 1 model can arise depending on the couplings in the original Hamiltonian. In this analysis, tensor network methods feature in two ways: On the one hand, we make use of recent techniques for the classification of SPT phases using matrix product states in order to identify the phases in the effective model with those in the underlying physical system, employing Kuenneth's theorem for cohomology. As an intuitive paradigmatic model we exemplify the developed methodology by investigating the bi-layered delta-chain. For strong ferromagnetic inter-layer couplings, we find the system to transit into exactly the same phase as an effective spin 1 model. However, for weak but finite coupling strength, we identify a symmetry broken phase differing from this effective spin-1 description. On the other hand, we underpin our argument with a numerical analysis making use of matrix product states.Comment: 13 pages, 6 figure

    A route towards engineering many-body localization in real materials

    Full text link
    The interplay of interactions and disorder in a quantum many body system may lead to the elusive phenomenon of many body localization (MBL). It has been observed under precisely controlled conditions in synthetic quantum many-body systems, but to detect it in actual quantum materials seems challenging. In this work, we present a path to synthesize real materials that show signatures of many body localization by mixing different species of materials in the laboratory. To provide evidence for the functioning of our approach, we perform a detailed tensor-network based numerical analysis to study the effects of various doping ratios of the constituting materials. Moreover, in order to provide guidance to experiments, we investigate different choices of actual candidate materials. To address the challenge of how to achieve stability under heating, we study the effect of the electron-phonon coupling, focusing on effectively one dimensional materials embedded in one, two and three dimensional lattices. We analyze how this coupling affects the MBL and provide an intuitive microscopic description of the interplay between the electronic degrees of freedom and the lattice vibrations. Our work provides a guideline for the necessary conditions on the properties of the ingredient materials and, as such, serves as a road map to experimentally synthesizing real quantum materials exhibiting signatures of MBL.Comment: 12 pages, 7 figure

    Ginzburg-Landau Theory for the Jaynes-Cummings-Hubbard Model

    Full text link
    We develop a Ginzburg-Landau theory for the Jaynes-Cummings-Hubbard model which effectively describes both static and dynamic properties of photons evolving in a cubic lattice of cavities, each filled with a two-level atom. To this end we calculate the effective action to first-order in the hopping parameter. Within a Landau description of a spatially and temporally constant order parameter we calculate the finite-temperature mean-field quantum phase boundary between a Mott insulating and a superfluid phase of polaritons. Furthermore, within the Ginzburg-Landau description of a spatio-temporal varying order parameter we determine the excitation spectra in both phases and, in particular, the sound velocity of light in the superfluid phase

    Efficient variational contraction of two dimensional tensor networks with a non trivial unit cell

    Get PDF
    Tensor network states provide an efficient class of states that faithfully capture strongly correlated quantum models and systems in classical statistical mechanics. While tensor networks can now be seen as becoming standard tools in the description of such complex many-body systems, close to optimal variational principles based on such states are less obvious to come by. In this work, we generalize a recently proposed variational uniform matrix product state algorithm for capturing one-dimensional quantum lattices in the thermodynamic limit, to the study of regular two-dimensional tensor networks with a non-trivial unit cell. A key property of the algorithm is a computational effort that scales linearly rather than exponentially in the size of the unit cell. We demonstrate the performance of our approach on the computation of the classical partition functions of the antiferromagnetic Ising model and interacting dimers on the square lattice, as well as of a quantum doped resonating valence bond state.Comment: 23 pages, 8 Figure

    The High Time Resolution Universe Survey VI: An Artificial Neural Network and Timing of 75 Pulsars

    Get PDF
    We present 75 pulsars discovered in the mid-latitude portion of the High Time Resolution Universe survey, 54 of which have full timing solutions. All the pulsars have spin periods greater than 100 ms, and none of those with timing solutions are in binaries. Two display particularly interesting behaviour; PSR J1054-5944 is found to be an intermittent pulsar, and PSR J1809-0119 has glitched twice since its discovery. In the second half of the paper we discuss the development and application of an artificial neural network in the data-processing pipeline for the survey. We discuss the tests that were used to generate scores and find that our neural network was able to reject over 99% of the candidates produced in the data processing, and able to blindly detect 85% of pulsars. We suggest that improvements to the accuracy should be possible if further care is taken when training an artificial neural network; for example ensuring that a representative sample of the pulsar population is used during the training process, or the use of different artificial neural networks for the detection of different types of pulsars.Comment: 15 pages, 8 figure

    VizieR Online Data Catalog: HTRU survey. Timing of 54 pulsars (Bates+, 2012)

    Get PDF
    All the pulsars presented here were discovered in the HTRU mid-latitude survey, which has now been fully processed. The survey observed the Galactic plane in the region -120°-35° were regularly observed using the 76-m Lovell Telescope and those below this declination were observed as part of the HTRU timing programme at Parkes. (3 data files)

    Review about mites (Acari) of rubber trees (Hevea spp., Euphorbiaceae) in Brazil

    Full text link
    corecore